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Exercises





Chapter 1

The Complex Number System

1.2 The field of complex numbers

1.2.1 Exercise

1. From zz = |z|2 follows 1
z = z

|z|2 = Re(z)
Re(z)2+Im(z)2−i

Im(z)
Re(z)2+Im(z)2 and

Re
(

1
z

)
= Re(z)

Re(z)2+Im(z)2

Im
(

1
z

)
= − Im(z)

Re(z)2+Im(z)2

2. We have

z − a

z + a
=

(z − a)(z + a)
(z + a)(z + a)

=
zz + (z − z)a− a2

zz + (z + z)a+ a2
=
|z|2 + 2iIm(z)a− a2

|z|2 + 2 Re(z)a+ a2
(1.1)

and

Re

(
z − a

z + a

)
=

|z|2 − a2

|z|2 + 2 Re(z)a+ a2

Im

(
z − a

z + a

)
=

2 Im(z)a
|z|2 + 2 Re(z)a+ a2

.

3. We have

z3 = (Re(z) + iIm(z))3

= Re(z)3 + 3 Re(z)2iIm(z) + 3 Re(z)(iIm(z))2 + (iIm(z))3

= Re(z)3 − 3 Re(z) Im(z)2 + i(3 Re(z)2 Im(z)− Im(z)3)

= Re(z)(Re(z)2 − 3 Im(z)2) + iIm(z)(3Re(z)2 − Im(z)2)

and

Re(z3) = Re(z)(Re(z)2 − 3 Im(z)2)
Im(z3) = Im(z)(3Re(z)2 − Im(z)2)
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4. We have

3 + 5i
7i+ 1

=
(3 + 5i)(1− 7i)
(1 + 7i)(1− 7i)

=
38− 16i

50
(1.2)

and

Re

(
3 + 5i
7i+ 1

)
=

38
50

Im

(
3 + 5i
7i+ 1

)
= −16

50
.

5. For point 3 we have

Re

(−1 + i
√

3
2

)3
 = −1

2

(
1
4
− 3

3
4

)
= 1

Im

(−1 + i
√

3
2

)3
 =

√
3

2

(
3
1
4
− 3

4

)
= 0

6. It is evident for point 5 that(
−1− i

√
3

2

)3

= 1 = 1 (1.3)

and so again

Re

(−1− i
√

3
2

)6
 = 1

Im

(−1− i
√

3
2

)6
 = 0

7. If n = 4k + r, with 0 ≤ r < 4, we have in = i4k+r = (i4)kir = 1kir = ir, then

Re(in) =


0 if r = 1 or r = 3,
−1 if r = 2,
1 if r = 0.

Im(in) =


0 if r = 0 or r = 2,
−1 if r = 3,
1 if r = 1.
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8. We have(
1 + i√

2

)2

= i,(
1 + i√

2

)3

=
(

1 + i√
2

)
i =

(
−1 + i√

2

)
,(

1 + i√
2

)4

= i2 = −1,(
1 + i√

2

)5

=
(

1 + i√
2

)
(−1) =

(
−1− i√

2

)
,(

1 + i√
2

)6

= i3 = −i,(
1 + i√

2

)7

=
(

1 + i√
2

)
(−i) =

(
1− i√

2

)
,(

1 + i√
2

)8

= (−1)2 = 1

1.2.2 Exercise

1. We have

|−2 + i| =
√

22 + 1 =
√

5, (1.4)

−2 + i = −2− i. (1.5)

2. We have

|−3| = 3, (1.6)

−3 = −3. (1.7)

3. We have

|(2 + i)(4 + 3i)| = |2 + i| |4 + 3i| =
√

5 ·
√

25 = 5
√

5, (1.8)

(2 + i)(4 + 3i) = (2 + i) (4 + 3i) = (2− i)(4− 3i) = 5− 10i. (1.9)

4. We have∣∣∣∣ 3− i√
2 + 3i

∣∣∣∣ = |3− i|∣∣√2 + 3i
∣∣ =

√
10√
11

=

√
10
11
, (1.10)

(
3− i√
2 + 3i

)
=

3 + i√
2− 3i

=
(3 + i)(

√
2 + 3i)

(
√

2− 3i)(
√

2 + 3i)
=

3(
√

2− 1) + i(9 +
√

2)
11

. (1.11)

5. We have∣∣∣∣( i

i+ 3

)∣∣∣∣ = |i|
|3 + i|

=
1√
10
, (1.12)

(
i

i+ 3

)
=

i

3 + i
=

−i
3− i

=
(−i)(3 + i)

(3− i)(3 + i)
=

1− 3i
10

. (1.13)
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6. We have∣∣(1 + i)6
∣∣ = |1 + i|6 =

√
2

6
= 23 = 8, (1.14)

(1 + i)6 = 1 + i
6

= (1− i)6 = (−2i)3 = (−2)3i3 = 8i. (1.15)

7. We have∣∣i17∣∣ = |i|17 = 1, (1.16)

i17 = i4·4+1 = i4 · i1 = 1 · i = i = −i. (1.17)

1.2.3 Exercise

• Suppose z ∈ R, which in fact means Im(z) = 0, and z = z.

• Suppose z = z. Then Im(z) = 1
2i (z − z) = 0, which is the same as saying z ∈ R.

1.2.4 Exercise

1. |z + w|2 = (z + w)(z + w) = zz + 2zw + ww = |z|2 + zw + (zw) + |w|2 = |z|2 + 2 Re(zw) + |w|2

2. |z − w|2 = |z|2 + 2 Re(z(−w)) + |−w|2 = |z|2 − 2 Re(zw) + |w|2

3. |z + w|2 + |z − w|2 = |z|2 + 2 Re(zw) + |w|2 + |z|2 − 2 Re(zw) + |w|2 = 2(|z|2 + |w|2)

1.2.5 Exercise

• That |w1w2| = |w1| |w2| is already known. Now suppose |w1w2 · · ·wn| = |w1| |w2| · · · |wn|. Then
|w1w2 · · ·wn+1| = |w1w2 · · ·wn| |wn+1| =
|w1| |w2| · · · |wn| |wn+1|.

• That w1w2 = w1 w2 is already known. Now suppose w1w2 · · ·wn = w1 w2 · · · wn. Then
w1w2 · · ·wn+1 = w1w2 · · ·wn wn+1 =
w1 w2 · · · wn wn+1.

1.2.6 Exercise

Let

R(z) =
a0 + a1z + · · ·+ anz

n

b0 + b1z + · · ·+ bmzm
, (1.18)

where ai ∈ R, 0 ≤ n; bj ∈ R, 0 ≤ m. Then

R(z) =
a0 + a1z + · · ·+ anzn

b0 + b1z + · · ·+ bmzm
=

=
a0 + a1z + · · ·+ anz

n

b0 + b1z + · · ·+ bmz
m

=

=
a0 + a1z + · · ·+ anz

n

b0 + b1z + · · ·+ bmz
m =

= R(z).
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1.3 The Complex Plane

1.3.1 Exercise

From

|z| ≤ |z − w|+ |w| (1.19)

follows |z| − |w| ≤ |z − w|, and from

|w| ≤ |w − z|+ |z| (1.20)

follows |w| − |z| ≤ |z − w|. So ||w| − |z|| ≤ |z − w|.
If equality holds, then either |z| = |z − w| + |w| or |w| = |w − z| + |z|. Suppose z 6= 0, w 6= 0. In the
former case, z − w = tw for some t ≥ 0, whence z = (t + 1)w; in the latter case w − z = uz for some
u ≥ 0, whence w = (u+ 1)z. In all cases, either z = αw for some α ≥ 0 or w = βz for some β ≥ 0.

1.3.2 Exercise

• Suppose zk/zl ≥ 0 for 1 ≤ k, l ≤ n such that zl 6= 0. Suppose zk̄ 6= 0. In particular zk = αkzk̄,
1 ≤ k ≤ n, for some αk ∈ R+. Then

|z1 + · · ·+ zn| = |α1zk̄ + · · ·+ αnzk̄| = |(α1 + · · ·+ αn)zk̄| =
= (α1 + · · ·+ αn) |zk̄| = α1 |zk̄|+ · · ·+ αn |zk̄| =
= |α1zk̄|+ · · ·+ |αnzk̄| = |z1|+ · · ·+ |zn| .

• By induction. We know that

|z1 + · · ·+ zn| = |z1|+ · · ·+ |zn| . (1.21)

implies zi/zj ≥ 0 for 1 ≤ i, j ≤ n and zj 6= 0 if n = 2. So suppose that if the implication holds
for n, it also holds for n+ 1.
From

|z1 + · · ·+ zn+1| = |z1|+ · · ·+ |zn+1| (1.22)

we have

|z1 + · · ·+ zn+1| = |z1|+ · · ·+ |zn+1| ≤
≤ |z1 + · · ·+ zn|+ |zn+1| ≤
≤ |z1|+ · · ·+ |zn+1|

(1.23)

hence

|z1 + · · ·+ zn|+ |zn+1| = |z1|+ · · ·+ |zn+1| (1.24)

and

|z1 + · · ·+ zn| = |z1|+ · · ·+ |zn| . (1.25)

By the inductive hypothesis, this implies zi/zj ≥ 0 for 1 ≤ i, j ≤ n and zj 6= 0. So if zk̄ 6= 0, let
zi = αizk̄ for 1 ≤ i ≤ n, and we have

|α1zk̄ + · · ·+ αnzk̄ + zn+1| = |α1zk̄|+ · · ·+ |αnzk̄|+ |zn+1|
= α1 |zk̄|+ · · ·+ αn |zk̄|+ |zn+1|
= |α1zk̄ + · · ·+ αnzk̄|+ |zn+1|

(1.26)

that is, if α =
∑n

i=1 αi,

|αzk̄ + zn+1| = |αzk̄|+ |zn+1| (1.27)

which implies zn+1/zk̄ ≥ 0. This completes the proof that zi/zj ≥ 0 for 1 ≤ i, j ≤ n + 1 and
zj 6= 0.
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1.3.3 Exercise

Since the equation

|z − a| − |z + a| = 2c (1.28)

in the plane R2 says that the difference between the distances of the point z = (x, y) from the points
(a, 0) and (−a, 0) respectively is constant and equal to 2c, there are three possible cases for the set

C =
{
(x, y) ∈ R2 | |z − a| − |z + a| = 2c

}
(1.29)

as follows

1. c < |a|: C = ∅.

2. c = |a|: C is the half line x ≥ a if a ≤ 0 or x ≤ a if a ≥ 0

3. c > |a|: C is a branch of the hyperbola having focuses in the points (a, 0) and (−a, 0) and axes
the lines y = ±

√
(a2 − c2)/c2x, namely the branch that encloses the point (−a, 0).

If a is any complex number, the set C is obtained from one of the former cases with the rotation that
brings the point (|a| , 0) to the point a. For example, in the third case C is the branch of a hyperbola
with focuses a and −a that encloses the point −a.

1.4 Polar representation and roots of complex numbers

1.4.1 Exercise

Since 1 = cis(0), the equation zn = 1 has roots

cis
(

2kπ
6

)
, 0 ≤ k ≤ 5 (1.30)

that is

z1 = cis(0) = 1

z2 = cis
(π

3

)
=

1
2

+ i

√
3

2

z3 = cis
(

2π
3

)
= −1

2
+ i

√
3

2
z4 = cis (π) = −1

z5 = cis
(

4π
3

)
= −1

2
− i

√
3

2

z6 = cis
(

5π
3

)
=

1
2
− i

√
3

2

1.4.2 Exercise

(a) Since i = cis
(

π
2

)
, the equation z2 = i has roots

cis
(
π

4
+

2kπ
2

)
, 0 ≤ k ≤ 1 (1.31)

that is

z1 = cis
(π

4

)
=
√

2
2

+ i

√
2

2

z2 = cis
(

5π
4

)
= −

√
2

2
− i

√
2

2
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(b) As before, the equation z3 = i has roots

cis
(
π

6
+

2kπ
3

)
, 0 ≤ k ≤ 2 (1.32)

that is

z1 = cis
(π

6

)
=
√

3
2

+ i
1
2

z2 = cis
(

5π
6

)
= −

√
3

2
+ i

1
2

z3 = cis
(

3π
2

)
= −i

(c) Since
∣∣√3 + 3i

∣∣ = √
12 = 2

√
3, if θ = arg(

√
3 + 3i) it must be

cos θ =
√

3
2
√

3
=

1
2

sin θ =
3

2
√

3
=
√

3
2

(1.33)

whence θ = π
3 , and the equation z2 =

√
3 + 3i has roots√

2
√

3 cis
(
π

6
+

2kπ
2

)
, 0 ≤ k ≤ 1 (1.34)

that is

z1 =
√

2
√

3 cis
(π

6

)
=

√
3
√

3
2

+ i

√√
3

2

z2 =
√

2
√

3 cis
(

7π
6

)
= −

√
3
√

3
2

− i

√√
3

2

1.4.3 Exercise

The first part is trivial:

(ab)nm = anmbnm = (an)m(bm)n = (1)m(1)n = 1. (1.35)

Of course any integer which is a multiple both of n and m would do, so the smallest value of k such
that (ab)k = 1 for any given a and b is the smallest common multiple SMC(n,m) of n and m.
Yet that doesn’t mean that, given a primitive nth root of unity and b primitive mth root of unity,
SMC(n,m) is the smallest integer k such that (ab)k = 1. First, observe that x is a primitive rth root
of unity, if and only if

r = min
{
k ∈ N+ |xk = 1

}
(1.36)

and that if xs = 1, then r | s. So if (ab)k = 1, then

(ab)kn = bkn = 1

(ab)km = akm = 1

which yields that m | kn and n | km. Then every prime divisor of n or m but not of both must divide
as well k. To put it more clearly, if p is a prime, pu | n, and pu - m, then pu | k; and if pv | m, and
pv - m, then pv | k. So k cannot be smaller than the product of all such powers of primes. But this
doesn’t give a minimum. Indeed, if

a = cis
(π

6

)
b = cis

(π
2

)
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then a is a primitive 12th root of unity and b is a primitive 4th root of unity, and

ab = cis
(

2π
3

)
(1.37)

so (ab)3 = 1. But if

a = cis
(π

6

)
b = cis

(
2π
3

)
then a is a primitive 12th root of unity and b is a primitive 3rd root of unity, but

ab = cis
(

5π
6

)
(1.38)

and the smallest integer k such that (ab)k = 1 is 12, not 4.
If one of a and b is nonprimitive, the said condition does not hold, for example −1 is a 2nd root of
unity and also a 4th root of unity, but (−1)(−1) = 1.

1.4.4 Exercise

From

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)
(cos θ − i sin θ)n = cos(nθ)− i sin(nθ)

follows

cos(nθ) =
1
2
(
(cos θ + i sin θ)n + (cos θ − i sin θ)n

)
=

=
1
2

(
n∑

k=0

(
n

k

)
(cos θ)n−k(i sin θ)k+

+
n∑

k=0

(
n

k

)
(cos θ)n−k(−i sin θ)k

)
=

=
1
2

(
n∑

k=0

(
n

k

)
(cos θ)n−k

(
(i sin θ)k + (−i sin θ)k

))
=

= (cos θ)n −
(
n

2

)
(cos θ)n−2(sin θ)2 +

(
n

4

)
(cos θ)n−4(sin θ)4 − . . .

and

sin(nθ) =
1
2i
(
(cos θ + i sin θ)n − (cos θ − i sin θ)n

)
=

=
1
2i

(
n∑

k=0

(
n

k

)
(cos θ)n−k(i sin θ)k+

−
n∑

k=0

(
n

k

)
(cos θ)n−k(−i sin θ)k

)
=

=
1
2i

(
n∑

k=0

(
n

k

)
(cos θ)n−k

(
(i sin θ)k − (−i sin θ)k

))
=

=
(
n

1

)
(cos θ)n−1 sin θ −

(
n

3

)
(cos θ)n−3(sin θ)3 + . . .

1.4.5 Exercise

It is enough to know that zn = 1 and z 6= 1, since

(1 + z + z2 + · · ·+ zn−1)(z − 1) = zn − 1 = 0. (1.39)
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1.4.6 Exercise

Just a trivial check:

ϕ(t+ s) = cis(t+ s) = cis(t) cis(s) = ϕ(t)ϕ(s). (1.40)

1.4.7 Exercise

Let z = r cis θ, and suppose θ > 0. We’ll show that for some positive integer n it is Re(zn) < 0.
If π

2 < θ < 3π
2 there’s nothing to prove. If 0 < θ ≤ π

2 , then there is a positive integer n such that

1
n+ 1

π

2
< θ ≤ 1

n

π

2
(1.41)

which yields

π

2
< (n+ 1)θ ≤ n+ 1

n

π

2
≤ π (1.42)

so Re(zn+1) = rn+1 cos((n+ 1)θ) < 0.
If 3π

2 ≤ θ < 2π, let θ′ = θ − 2π, so that z = cis θ′ and −π
2 ≤ θ′ < 0 and there is a positive integer n

such that

− 1
n

π

2
≤ θ′ < − 1

n+ 1
π

2
(1.43)

which yields

−π ≤ −n+ 1
n

π

2
≤ θ′ < −π

2
(1.44)

and again Re(zn+1) = rn+1 cos((n+ 1)θ) < 0.

1.5 Lines and half planes in the complex plane

1.5.1 Exercise

The condition is that cisβ ⊥ cisα, that is β = α+ π
2 or β = α+ 3π

2 .

1.6 The extended plane and its spherical representation

1.6.1 Exercise

Using (6.3) expressions for x1, x2, x3 and x′1, x
′
2, x

′
3 in (6.6) we get

d(z, z′)2 =

= 2− 2
(z + z)(z′ + z′) + (−i(z − z))(−i(z′ − z′)) + (|z|2 − 1)(|z′|2 − 1)

(|z|2 + 1)(|z′|2 + 1)

=
2(zz + 1)(z′z′ + 1)− 4zz′ − 4zz′ − 2zzz′z′ + 2zz + 2z′z′ − 2

(|z|2 + 1)(|z′|2 + 1)
=

=
4z′z′ + 4zz − 4zz′ − 4zz′

(|z|2 + 1)(|z′|2 + 1)
=

= 4
(z − z′)(z − z′)

(|z|2 + 1)(|z′|2 + 1)
=

= 4
|z − z′|2

(|z|2 + 1)(|z′|2 + 1)
.

If z′ = ∞, then x′1 = 0, x′2 = 0 and x′3 = 1, then

d(z,∞)2 = 2− 2
|z|2 − 1
|z|2 + 1

=
4

|z|2 + 1
. (1.45)
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1.6.2 Exercise

1. (0, 0, 1)

2. ( 2
3 ,

2
3 ,

1
3 )

3. ( 3
7 ,

2
7 ,

6
7 )

1.6.3 Exercise

Two circumferences of maximum radius 1, lying in the coordinate planes x1x3 and x2x3 respectively.

1.6.4 Exercise

First, observe that N ∈ Λ ⇐⇒ β3 = l. Then, if the point (x1, x2, x3) of R3 lies in the plane P , using
(6.2) we get

2β1x+ 2β2y + β3(|z|2 − 1)
|z|2 + 1

= l (1.46)

and, being |z|2 = x2 + y2,

(β3 − l)x2 + (β3 − l)y2 + 2β1x+ 2β2y − (β3 + l) = 0. (1.47)

Now, if N ∈ Λ then β3 = l, and the former equation becomes

β1x+ β2y − 2l = 0 (1.48)

otherwise

x2 + y2 +
2β1

β3 − l
x+

2β2

β3 − l
y +

l + β3

l − β3
= 0. (1.49)

1.6.5 Exercise

Let X = (x1, x2, x3) ∈ S − N and Y = (y1, y2, y3) ∈ S − N , and let φ : S → C be the stereographic
projection. Then, as we know

φ(X) =
x1 + ix2

1− x3

φ(Y ) =
y1 + iy2
1− y3

whence

φ(X) + φ(Y ) =
(

x1

1− x3
+

y1
1− y3

)
+ i

(
x2

1− x3
+

y2
1− y3

)
. (1.50)

Let z = x+ iy = φ(X) + φ(Y ), then

x =
x1

1− x3
+

y1
1− y3

=
x1(1− y3) + y1(1− x3)

(1− x3)(1− y3)

y =
x2

1− x3
+

y2
1− y3

=
x2(1− y3) + y2(1− x3)

(1− x3)(1− y3)

and

φ−1(z) =

(
2x

|z|2 + 1
,

2y
|z|2 + 1

,
|z|2 − 1
|z|2 + 1

)
. (1.51)
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Now

|z|2 + 1 = x2 + y2 =

=
x2

1

(1− x3)2
+

2x1y1
(1− x3)(1− y3)

+
y2
1

(1− y3)2
+

+
x2

2

(1− x3)2
+

2x2y2
(1− x3)(1− y3)

+
y2
2

(1− y3)2
+ 1 =

=
(x2

1 + x2
2)(1− y2

3) + 2(x1y1 + x2y2)(1− x3)(1− y3) + (y2
1 + y2

2)(1− x2
3)

(1− x3)2(1− y3)2
+ 1 =

=
(x2

1 + x2
2)(1− y2

3) + 2(x1y1 + x2y2)(1− x3)(1− y3) + (y2
1 + y2

2)(1− x2
3)

(1− x3)2(1− y3)2
+

+
2(1− x3)2(1− y3)2 − (1− x3)2(1− y3)2

(1− x3)2(1− y3)2
=

=
(x2

1 + x2
2 + 1− 2x3 + x2

3)(1− y2
3)

(1− x3)2(1− y3)2
+

+
(y2

1 + y2
2 + 1− 2y3 + y2

3)(1− x2
3)

(1− x3)2(1− y3)2
+

+
2(x1y1 + x2y2)(1− x3)(1− y3)− (1− x3)2(1− y3)2

(1− x3)2(1− y3)2
=

=
2(1− x3)(1− y2

3) + 2(1− y3)(1− x2
3)

(1− x3)2(1− y3)2
+

+
2(x1y1 + x2y2)(1− x3)(1− y3)− (1− x3)2(1− y3)2

(1− x3)2(1− y3)2

=
(1− x3)(1− y3) [2(1− x3) + 2(1− y3) + 2x1y1 + 2x2y2 − (1− x3)(1− y3)]

(1− x3)2(1− y3)2

=
(1− x3)(1− y3) [3 + 2x1y1 + 2x2y2 − x3y3 − x3 − y3]

(1− x3)2(1− y3)2

=
2x1y1 + 2x2y2 − x3y3 − x3 − y3 + 3

(1− x3)(1− y3)

and, with similar calculations

|z|2 − 1 =
2x1y1 + 2x2y2 − 3x3y3 + x3 + y3 + 1

(1− x3)(1− y3)
. (1.52)

Finally

φ−1(φ(X) + φ(Y )) =


2[x1(1−y3)+y1(1−x3)]

2x1y1+2x2y2−x3y3−x3−y3+3
2[x2(1−y3)+y2(1−x3)]

2x1y1+2x2y2−x3y3−x3−y3+3
2x1y1+2x2y2−3x3y3+x3+y3+1
2x1y1+2x2y2−x3y3−x3−y3+3

 (1.53)
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Chapter 2

Metric Spaces and the Topology of
C

2.1 Definition and examples of metric spaces

2.1.1 Exercise

1. In both cases, that is, R and C, we know that

(a) |z − w| ≥ 0 for all z, w ∈ X
(b) |z − w| = 0 ⇐⇒ z − w = 0 ⇐⇒ z = w for all z, w ∈ X
(c) |z − w| = |−(z − w)| = |w − z| for all z, w ∈ X
(d) |z − u| = |(z − w) + (w − u)| ≤ |z − w|+ |w − u| for all z, w, u ∈ X

2. It is more correct to consider (Y, d̄), where d̄ = d|Y×Y . Then, the conditions for d̄ follow imme-
diately from the ones for d.

3. Obvious.

4. The first three conditions are obvious. As for the last one, one has:

d(a+ ib, c+ id) = max {|a− c| , |b− d|}
d(c+ id, e+ if) = max {|c− e| , |d− f |}
d(a+ ib, e+ if) = max {|a− e| , |b− f |}

and

|a− e| ≤ |a− c|+ |c− e|
|b− f | ≤ |b− d|+ |d− f |

whence

max {|a− e| , |b− f |} ≤ max {|a− c|+ |c− e| , |b− d|+ |d− f |} (2.1)

and using the easy-to-check inequality

max {x+ y, u+ v} ≤ max {x, u}+ max {y + v} (2.2)

one gets the result.

5. The first three conditions are easy as usual. To prove the last one, one has to use Schwarz
inequality, which will be proved later:∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣ ≤
√√√√ n∑

i=1

a2
i

√√√√ n∑
i=1

b2i for any a, b ∈ R. (2.3)
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Now, if X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , yn) and Z = (z1, z2, . . . , zn) are three points of Rn,
one has

d(X,Z)2 =
n∑

i=1

(xi − zi)2 =
n∑

i=1

((xi − yi) + (yi − zi))2 =

=
n∑

i=1

(xi − yi)2 +
n∑

i=1

(yi − zi)2 + 2
n∑

i=1

(xi − zi)(yi − zi) ≤

≤
n∑

i=1

(xi − yi)2 +
n∑

i=1

(yi − zi)2 + 2

∣∣∣∣∣
n∑

i=1

(xi − zi)(yi − zi)

∣∣∣∣∣ ≤
≤

n∑
i=1

(xi − yi)2 +
n∑

i=1

(yi − zi)2+

+ 2

√√√√ n∑
i=1

(xi − yi)2

√√√√ n∑
i=1

(yi − zi)2 =

=

√√√√ n∑
i=1

(xi − yi)2 +

√√√√ n∑
i=1

(yi − zi)2

2

=

= (d(X,Y ) + d(Y,Z))2 .

As for Schwarz inequality, if λ, a and b are any three real numbers, one has(
λa− 1

λ
b

)2

= λ2a2 +
b2

λ2
− 2ab ≥ 0 (2.4)

whence

2ab ≤ λ2a2 +
b2

λ2
(2.5)

and (
λa+

1
λ
b

)2

= λ2a2 +
b2

λ2
+ 2ab ≥ 0 (2.6)

whence

−2ab ≤ λ2a2 +
b2

λ2
(2.7)

and from these two

2 |ab| ≤ λ2a2 +
b2

λ2
. (2.8)

So, if a1, a2, . . . , an and b1, b2, . . . , bn are real numbers,

2

∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ ≤ λ2
n∑

i=1

a2
i +

1
λ2

n∑
i=1

b2i (2.9)

and eventually, choosing

λ2 =

√∑n
i=1 b

2
i√∑n

i=1 a
2
i

(2.10)

one gets the result.

2.1.2 Exercise

(a) X = B(O, 1) is open. If x ∈ X, let r = 1−d(O, x); clearly r > 0; then B(x, r) ⊆ X: if y ∈ B(x, r),
then d(O, y) ≤ d(O, x) + d(x, y) < d(O, x) + r = d(O, x) + 1− d(O, x) = r, so y ∈ B(O, x).
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(b) X = {z ∈ C | Im z = 0} is closed, since C − X is open. If z = x + iy ∈ C − X, then
B(z, |y|) ⊆ C − X: suppose for instance y > 0, and let w = u + iv ∈ B(z, |y|); if v ≤ 0, then
d(z, w) =

√
(u− x)2 + (v − y)2 ≥

√
(v − y)2 = |v − y| = y − v ≥ y which is impossible since

w ∈ B(z, |y|); so it must be v > 0 and then w ∈ C−X.

(c) X = {z ∈ C | ∃n ∈ N+ : zn = 1} is not open. First, observe that if z ∈ X then |z| = 1. Further-
more, 1 ∈ X, and in every open ball B(1, r) there is an element, for instance 1 + r/2, such that
|1 + r/2| > 1, that is 1 + r/2 /∈ X and B(1, r) * X. To show that X is not close, observe that
|cis(1)| = 1 but cis(1) /∈ X. Since we know that sin and cos are continuous functions, surely
for any ε > 0 there exists a δ such that

√
(sin(t)− sin(1))2 + (cos(t)− cos(1))2 < ε whenever

|t− 1| < δ, that is d(cis(t), cis(1)) < ε if |t− 1| < δ. Now, take n such that π/n < δ and

k̄ = min
{
k ∈ N | 0 ≤ k ≤ n− 1,

2kπ
n

> 1− δ

}
. (2.11)

Clearly,

2k̄π
n

< 1 + δ (2.12)

because

2k̄π
n

≥ 1 + δ (2.13)

yields

2(k̄ − 1)π
n

=
2k̄π
n

− 2π
n
>

2k̄π
n

− 2δ ≥ 1− δ (2.14)

which contradicts the minimality of k̄. So∣∣∣∣2k̄πn − 1
∣∣∣∣ < δ (2.15)

which implies that∣∣∣∣cis(2k̄π
n

)
− cis(1)

∣∣∣∣ < ε. (2.16)

What we have proved is this: given any ε > 0 there exists an element z = cis(2k̄π/n) in X such
that z ∈ B(1, ε), so C−X is not open and X is not closed.

(d) X = {z ∈ C | Im z = 0, 0 ≤ Re z < 1} is not open: clearly 0 ∈ X, but there is no r > 0 such that
B(0, r) ⊆ X, as for instance ir/2 ∈ B(0, r) but ir/2 /∈ X. X is not closed: 1 /∈ X but there is
no r > 0 such that B(1, r) ⊆ C −X, as for instance, if η = min {r/2, 1/2}, 1 − η ∈ B(1, r) but
1− η /∈ C−X as 1− η ∈ X.

(e) X = {z ∈ C | Im z = 0, 0 ≤ Re z ≤ 1} is closed: X = Y ∩ Z where Y = {z ∈ C | Im z = 0} and
Z = {z ∈ C | 0 ≤ Re z ≤ 1}; we have already seen that the real axis Y is closed, and it is easy to
see that Z is closed too: if z ∈ C−Z and for instance Re z > 1, then B(z, (Re z−1)/2) ⊆ C−Z.
Similarly if Re z < 0.

2.1.3 Exercise

The open ball B(x, r) is open because, if y ∈ B(x, r), then B(y, r − d(x, y)) ⊆ B(x, r): in fact, if
z ∈ B(y, r−d(x, y)), then d(y, z) < r−d(x, y) and d(x, z) ≤ d(x, y)+d(y, z) < d(x, y)+ r−d(x, y) = r
so z ∈ B(x, r).

The closed ball B̄(x, r) is indeed closed because, if y ∈ X − B̄(x, r), then B(y, d(x, y) − r) ⊆
X − B̄(x, r): in fact, if z ∈ B(y, d(x, y) − r) then d(y, z) < d(x, y) − r and d(x, y) ≤ d(x, z) + d(z, y)
whence d(x, z) ≥ d(x, y)− d(y, z) > d(x, y) + r − d(x, y) = r so z /∈ B̄(x, r) and z ∈ X − B̄(x, r).

2.1.4 Exercise

If all the sets Gj , j ∈ J are open and x ∈
⋃

j∈J Gj , then there is at least an index j0 ∈ J such that
x ∈ Gj0 ; then there is an open ball B(x, r) such that B(x, r) ⊆ Gj0 which yields B(x, r) ⊆

⋃
j∈J Gj .
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2.1.5 Exercise

As stated, it is just a trivial and straightforward application of de Morgan’s laws to Proposition 1.9

2.1.6 Exercise

Just observe that G = X − (X −G).

2.1.7 Exercise

More generally: if (X, d) is a metric space and φ : X → Y is a bijection, then one can give Y a metric
space structure, defining d′ : Y × Y → R by d′(y1, y2) = d(φ−1(y1), φ−1(y2)). It is a routine check to
prove that the function d′ satisfies the conditions in order to be a distance function.

2.1.8 Exercise

Let G be an open subset of X and Y ⊆ X. If x ∈ G ∩ Y , since x ∈ G and G is open, there is an open
ball B(x, r) of X such that B(x, r) ⊆ G; then B(x, r)∩Y is an open ball of Y and B(x, r)∩Y ⊆ G∩Y .

Let G be an open subset of Y (that is, in the topology of Y induced by the distance function d
restricted to Y ). Then for every x ∈ G there is an open ball of Y BY (x, rx) such that BY (x, rx) ⊆ G,
where BY (x, rx) = B(x, rx) ∩ Y , and B(x, rx) = {y ∈ X | d(x, y) < rx}. Clearly we have

G = Y ∩

(⋃
x∈G

B(x, rx)

)
(2.17)

and

A =
⋃

x∈G

B(x, rx) (2.18)

is an open subset of X.

2.1.9 Exercise

Let G be a closed subset of X and Y ⊆ X. Then X −G is an open subset of X, and (X −G) ∩ Y is
an open subset of Y , as seen in Exercise 8. Since clearly Y −G = (X−G)∩Y , G is a closed subset of Y .

Let G be a closed subset of Y (that is, in the topology of Y induced by the distance function d
restricted to Y ). Then Y −G is an open subset of Y , so, as seen in Exercise 8, there is an open subset
A of X such that Y −G = A ∩ Y and clearly G = (X −A) ∩ Y .

2.1.10 Exercise

Here Ä will denote the interior of the set A and A the closure of the set A.

(a) If Ä = A, then A is open, since so is Ä being union of open sets. If A is open, clearly A ⊆ Ä, as
A ⊆ A. But for any set S it is true that S̈ ⊆ S, being S̈ union of subsets of S.

(b) If A = A, then A is closed, since so is A being intersection of closed sets. If A is closed, clearly
A ⊇ A, as A ⊇ A. But for any set S it is true that S ⊇ S, being S intersection of supersets of S.

(c)

1. Since X− (X −A) is open and X− (X −A) ⊆ A, we have X− (X −A) ⊆ Ä. Furthermore,
X − Ä is closed and X − Ä ⊇ X −A, then X − Ä ⊇ X −A and Ä ⊆ X −X −A.

2. Since X− ¨(X −A) is closed and X− ¨(X −A) ⊇ A, we have X− ¨(X −A) ⊇ A. Furthermore,
X −A is open and X −A ⊆ X −A, then X −A ⊆ ¨X −A and A ⊇ X − ¨X −A.
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3. Since ∂A = A ∩ (X −A), then ∂A ⊆ A and ∂A ⊆ (X −A) and from the latter and Point 1
we get ∂A ⊆ X − Ä, so ∂A ⊆ A− Ä.
Clearly, A − Ä ⊆ A; also, A − Ä ⊆ X − Ä so, by Point 2, A − Ä ⊆ (X −A). Then
A− Ä ⊆ A ∩ (X −A) = ∂A.

(d) Both A ⊆ A ∪B and B ⊆ A ∪B hold, so both A ⊆ A ∪B and B ⊆ A ∪B hold too, whence
A ∪B ⊆ A ∪B.
Furthermore, A ∪B is a closed subset of X and A ∪B ⊆ A ∪B, so (A ∪B) ⊆ A ∪B.

(e) If x ∈ Ä, there exists an open set B such that x ∈ B ⊆ A, and then there is an open ball B(x, r)
such that B(x, r) ⊆ B; clearly B(x, r) ⊆ A.
If there is an open ball B(x, r) such that B(x, r) ⊆ A, then B(x, r) ⊆ Ä and x ∈ Ä.

2.1.11 Exercise

Here we use the well known fact that if α is an irrational number the set {n+mα | n ∈ N,m ∈ Z} is
dense in R.

Now, if t ∈ T = {z ∈ C | |z| = 1}, there is a real number β such that t = cisβ and for any
ε > 0 there exists δ such that |θ − β| < δ implies |cis θ − cisβ| = |cis θ − t| < ε. For the said well
known fact, there exist two integers n and m with n ≥ 0 such that |n+ 2mπ − β| < δ, which yields
|cis(n+ 2mπ)− cisβ| = |cisn− t| < ε. So we have proved that for any t ∈ T and for any ε > 0 in
the open ball B(t, ε) lies an element of S = {cis k | k ∈ N}, and this for Point (f) of Proposition 1.13
means that every point t of T belongs to S, that is, T ⊆ S. But since T is closed and T ⊇ S, also
S ⊆ T holds, and eventually T = S.

To prove that T is closed, just observe that if /∈ T , then B(z, |z| − 1) ⊆ X −T . Or better still, that
T = B̄(0, 1) ∩ (X −B(0, 1)).

The set Sθ = {cis kθ | k ∈ N} is dense in T if π/θ is irrational: just as before, for any β ∈ R and
for any δ > 0 there are two integers n and m with n ≥ 0 such that |n+ 2mπ/θ − β/θ| < δ/ |θ| or
|nθ + 2mπ − β| < δ, then if t = cisβ ∈ T , for any ε > 0 there are two integers n and m with n ≥ 0
such that |cis(nθ + 2mπ)− cisβ| = |cisnθ − t| < ε.

The set Sθ = {cis kθ | k ∈ N} is not dense in T if π/θ is rational: if π/θ = p/q with p ∈ Z and
q ∈ Z, then cis kθ = cis kqπ/p which can take only 2p distinct values for k = 0, 1, . . . , 2p− 1.

So the set Sθ = {cis kθ | k ∈ N} is dense in T if and only if π/θ is irrational.

2.2 Connectedness

2.2.1 Exercise

(a) If A is an interval, here it means that there are two real numbers α and β and one of the following
cases holds: A = (α, β), A = (α, β], A = [α, β), A = [α, β]. In the first case, for instance, if
a, b ∈ A and a < b, then a > α and b < β, so if a ≤ x ≤ b then also x > α and x < β, so x ∈ A.
The same in the other cases.

(b) Simply apply Theorem 2.3.

2.2.2 Exercise

Let φ(s) = sb + (1 − s)a for s ∈ [0, 1]. If s0 ∈ S = {s ∈ [0, 1] | φ(s) ∈ A}, then ā = φ(s0) ∈ A; as A
is an open subset of G, there is a ball BG(ā, r) = {z ∈ G | |z − ā| < r} such that BG(ā, r) ⊆ A. So if
|s− s0| < r/ |b− a|, then |φ(s)− φ(s0)| < r, which yields that φ(s) ∈ A, and we get B(s0, r/ |b− a|) ⊆
S.

The same for T .

2.2.3 Exercise

(a) X is connected. Let A = {z ∈ C | |z| < 1} and B = {z ∈ C | |z − 2| < 1}; then X = A ∪ B. A is
connected and so is A by Proposition 2.8 (a); B is connected; 1 ∈ A ∩B, so by Lemma 2.6 X is
connected.
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(b) X is not connected. If x ∈ [0, 1), the component of x must be an interval I and [0, 1) ⊆ I; since
also I ⊆ X, the only possibility is I = [0, 1).

Since for n ≥ 1

1 +
1

n+ 1
< 1 +

1
n

+
1

2n(n+ 1)
< 1 +

1
n
< 1 +

1
n

+
1

2n(n− 1)
< 1 +

1
n− 1

(2.19)

and

1
2n(n+ 1)

<
1

2n(n− 1)
(2.20)

we have B( 1
n ,

1
2n(n+1) ) ∩X =

{
1 + 1

n

}
so the component of 1 + 1

n is
{
1 + 1

n

}
.

(c) X is not connected and its components are

Ck = {r cis θ | 2kπ < θ < 2(k + 1)π, θ < r < θ + 2π, k ∈ N} (2.21)

but to prove it without arcwise connectedness would be a folly.

2.2.4 Exercise

If D were not connected, there would be at least two components C1 and C2 of D. If x1 ∈ C1, x2 ∈ C2,
there must be Dj1 and Dj2 such that x1 ∈ Dj1 and x2 ∈ Dj2 , and since Dj1 and Dj2 are connected, we
have Dj1 ⊆ D1 and Dj2 ⊆ D2. But since Dj1 ∩Dj2 6= ∅, also D1 ∩D2 6= ∅ holds, which is impossible.

2.2.5 Exercise

Take a ∈ F and for ε > 0 call Aε the set of all points b of F such that there are points z0, z1, . . . , zn

in F with z0 = a, zn = b and d(zk−1, zk) < ε for 1 ≤ k ≤ n. The set Aε is open in F , since if
x ∈ Aε and y ∈ BF (x, ε) clearly y ∈ Aε. But F − Aε is open in F too: if x ∈ F − Aε and there
were y ∈ Aε ∩ BF (x, ε) then x ∈ Aε, a contradiction, so BF (x, ε) ⊆ F − Aε. Now we have that if
F − Aε 6= ∅ then F is not connected, since F it is connected, then F − Aε = ∅ and Aε = F . Being
ε any positive real number, the statement is proved. It looks like the fact that F is closed is not needed.

The set F =
{
(x, y) ∈ R2 | x 6= 0, y = 1/ |x|

}
satisfies the given condition and is closed, but it is

not connected.

2.3 Sequences and completness

2.3.1 Exercise

(a) If A is closed, by Proposition 3.2 A contains all the points to which some sequence in A converges,
in particular all its limit points.

IfA is not closed, take x ∈ A−A. If x0 ∈ A, then d(x, x0) > 0, so take n1 = min {n ∈ N | 1/n < d(x, x0)};
since x0 /∈ B(x, 1/n1), there is a point x1 such that x1 ∈ BA(x, 1/n1) and x1 6= x0. Going on in
this way, we have a sequence xk in A whose points are all distinct, a sequence of natural numbers
nk such that nk < nk+1 for each k, and limxk = x: if ε > 0, there is k̄ such that 1/nk̄ < ε, so
xk̄ ∈ BA(x, ε). This shows that x is a limit point of A, so if A is not closed, it does not contain
all its limit points.

(b) Call Al the set of all limit points of A. From the proof of point (a) we know that if x ∈ A − A
then x ∈ Al, so A ⊆ A ∪Al.

Now take x ∈ A ∪ Al. If x ∈ A, then x ∈ A. If x /∈ A, there is a ball B(x, r) of X such that
B(x, r) ∩A = ∅, so x /∈ Al; then x ∈ Al implies x ∈ A. Eventually A ∪Al ⊆ A.

2.3.2 Exercise

If xn is a Cauchy sequence in Y , it is a Cauchy sequence in X too, since the metric is the same, so
limxn = x for some x ∈ X. By Proposition 3.2 x ∈ Y , and Y is complete.
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2.3.3 Exercise

If x ∈ A and y ∈ A, for every ε > 0 there are two points x̄ ∈ A and ȳ ∈ A such that d(x, x̄) < ε and
d(y, ȳ) < ε. Then for every ε > 0 we have d(x, y) ≤ d(x, x̄)+d(x̄, ȳ)+d(ȳ, y) < d(x̄, ȳ)+2ε ≤ diamA+2ε,
which implies d(x, y) ≤ diamA, whence diamA ≤ diamA. Since A ⊆ A we have also diamA ≤ diamA,
then diamA = diamA.

2.3.4 Exercise

We know that

d(zn, z) =
2 |zn − z|√

(1 + |zn|2)(1 + |z|2)
. (2.22)

Since ||zn| − |z|| ≤ |zn − z|, if |zn − z| → 0 then |zn| → |z|, and d(zn, z) → 0. Since d(z,∞)−d(zn, z) ≤
d(zn,∞) ≤ d(zn, z) + d(z,∞), if d(zn, z) → 0 then d(zn,∞) → d(z,∞), or

2√
1 + |zn|2

→ 2√
1 + |z|2

(2.23)

which yields again |zn| → |z| and |zn − z| = d(zn, z)
√

(1 + |zn|2)(1 + |z|2) → 0.

Now suppose |zn| → +∞. Since for z ∈ C and v ∈ C we have the inequality |z − v| ≤
√

2
√
|z|2 + |v|2,

we get for n ∈ N, m ∈ N that

d(zn, zm) ≤

√
2
√
|zn|2 + |zm|2√

(1 + |zn|2)(1 + |zm|2)
=

=

√
2

√(
1

|zm|

)2

+
(

1
|zn|

)2

√((
1
|zn|

)2

+ 1
)((

1
|zm|

)2

+ 1
) ≤

≤
√

2

√(
1
|zm|

)2

+
(

1
|zn|

)2

Since for any ε > 0 there is N such that k > N implies |zn| > 2/ε, for n > N and m > N we have

d(zn, zm) <
√

2
√

2(ε/2)2 = ε. (2.24)

Since

d(zn,∞) =
2√

1 + |zn|2
(2.25)

of course if |zn| → +∞ then d(zn,∞) → 0, or zn →∞. So zn surely is convergent in C∞.

2.3.5 Exercise

Let xn be a convergent sequence in any metric space (X, d), and limxn = x. This means that for every
ε > 0 there is N ∈ N such that n ≥ N implies d(xn, x) < ε/2. Then for n ≥ N and m ≥ N we have
d(xn, xm) ≤ d(xn, x) + d(xm, x) = ε.

2.3.6 Exercise

Any open proper subset of Rn, for exampleB(O, r) with r > 0, or the half-space {(x1, . . . , xn) ∈ Rn | x1 > 0}.
Also (C, d) where d is the metric on C.
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2.3.7 Exercise

Take

d(x, y) =
2 |x− y|

√
x2 + 1

√
y2 + 1

. (2.26)

This amounts to project X ∈ S1 − {(0, 1)}, where

S1 =
{
(x1, x2) ∈ R2 | x2

1 + x2
2 = 1

}
, (2.27)

onto the x1 axis, and take as distance between two points on that axis the Euclidean distance between
the corresponding points on S1. Since d(x, y) ≤ 2 |x− y|, it is obvious that |x− y| → 0 implies
d(x, y) → 0.

To show the other implication, this time without using the point ∞, we start proving the inequality

|x− y|
√
x2 + 1

√
y2 + 1

≥

∣∣∣∣∣ 1√
x2 + 1

− 1√
y2 + 1

∣∣∣∣∣ (2.28)

that holds for every x ∈ R and y ∈ R; if x = −y the inequality becomes

|x|√
x2 + 1

≥ 0 (2.29)

which is true; if x 6= −y

|x− y| = |x− y| |x+ y|
|x+ y|

=

∣∣x2 − y2
∣∣

|x+ y|
≥
∣∣x2 − y2

∣∣
|x|+ |y|

≥

≥
∣∣x2 − y2

∣∣
√
x2 + 1 +

√
y2 + 1

=

=

∣∣∣√x2 + 1−
√
y2 + 1

∣∣∣ ∣∣∣√x2 + 1 +
√
y2 + 1

∣∣∣∣∣∣√x2 + 1 +
√
y2 + 1

∣∣∣ =

=
∣∣∣√x2 + 1−

√
y2 + 1

∣∣∣
whence

|x− y|
√
x2 + 1

√
y2 + 1

≥

∣∣∣√x2 + 1−
√
y2 + 1

∣∣∣
√
x2 + 1

√
y2 + 1

=

∣∣∣∣∣ 1√
x2 + 1

− 1√
y2 + 1

∣∣∣∣∣ . (2.30)

So if d(xn, x) → 0 we have∣∣∣∣∣ 1√
x2

n + 1
− 1√

x2 + 1

∣∣∣∣∣ ≤ |xn − x|√
x2

n + 1
√
x2 + 1

=
1
2
d(xn, x) (2.31)

which yields
√
x2

n + 1 →
√
x2 + 1 and

|xn − x| = 1
2

√
x2

n + 1
√
x2 + 1d(xn, x) → 0. (2.32)

To show that xn is a Cauchy sequence if |xn| → 0, we use once again the inequality

d(xn, xm) ≤
√

2

√(
1
|xm|

)2

+
(

1
|xn|

)2

. (2.33)

2.3.8 Exercise

Take ε > 0. Suppose limxnk
= x, then there is an N1 ∈ N such that k ≥ N1 implies d(xnk

, x) < ε
2 .

Since xn is a Cauchy sequence, there is an N2 ∈ N such that n ≥ N2 andm ≥ N2 implies d(xn, xm) < ε
2 .

Also, there is an N3 ∈ N such that k ≥ N3 implies nk ≥ N2. If N = max {N1, N3}, then k ≥ N implies

d(xn, x) ≤ d(xn, xnk
) + d(xnk

, x) < d(xn, xnk
) +

ε

2
(2.34)

for every n ∈ N, and with nk ≥ N2, so if n ≥ N2 we have d(xn, x) < ε.
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2.4 Compactness

2.4.1 Exercise

We need to prove that if for any collection F of closed subset of K with the finite intersection property
results⋂

C∈F
C 6= ∅ (2.35)

then K is compact. Suppose there are open subsets Ai of X such that

K ⊆
⋃
i∈I

Ai (2.36)

and that for any finite subset J of I results

K *
⋃
j∈J

Aj ; (2.37)

then for any finite subset J of I there is x ∈ K such that

x /∈
⋃
j∈J

Aj (2.38)

which implies that for every j ∈ J x ∈ K − Aj ; the sets K − Aj = K ∩ (X − Aj) are closed in K, so
what we have just proved is that the collection K −AJ | j ∈ J has the finite intersection property; by
hypothesis, there is a y such that

y ∈
⋂
j∈J

K −Aj = K −
⋃
j∈J

Aj (2.39)

and this is a contradiction.

2.4.2 Exercise

Since p ∈ R and q ∈ R it is obvious that diamR ≥ d(p, q). If x ∈ R and y ∈ R, then for i = 1, . . . , n
we have pi ≤ xi ≤ qi and pi ≤ yi ≤ qi whence |yi − xi| ≤ qi − pi for i = 1, . . . , n and

d(x, y) =

√√√√ n∑
i=1

(yi − xi)2 ≤

√√√√ =∑
i=1

(qi − pi)2d(p, q) (2.40)

so diamR ≤ d(p, q).

2.4.3 Exercise

Choose m ∈ N such that d(a, b)/m < ε and take the points

x(k1,...,kn) =
(
a1 +

b1 − a1

m
k1, . . . , an +

b1 − a1

m
kn

)
, 0 ≤ k1, . . . , kn ≤ m. (2.41)

Define the mn rectangles

R(k1,...,kn) = ×n
i=1[x

(k1,...,kn)
i , x

(k1+1,...,kn+1)
i ], 0 ≤ k1, . . . , kn ≤ m− 1. (2.42)

These rectangles are all subsets of F , and

diamR(k1,...,kn) = d(x(k1,...,kn)
i , x

(k1+1,...,kn+1)
i ) =

=

√√√√ n∑
i=1

(
x

(k1+1,...,kn+1)
i − x

(k1,...,kn)
i

)2

=

=

√√√√ n∑
i=1

(bi − ai)2

m2
=
d(a, b)
m

< ε.
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Furthermore,

R =
(m−1,...,m−1)⋃

(k1,...,kn)=(0,...,0)

R(k1,...,kn). (2.43)

In fact, if x ∈ R(k1,...,kn) then, since 0 ≤ ki ≤ m− 1, for 1 ≤ i ≤ n we have

ai ≤ ai +
bi − ai

m
ki ≤ xi ≤ ai +

bi − ai

m
(ki + 1) ≤ bi; (2.44)

if x ∈ R, then ai ≤ xi ≤ bi for 0 ≤ i ≤ n, so there surely are ki for 0 ≤ i ≤ n such that

ai +
bi − ai

m
ki ≤ xi ≤ ai +

bi − ai

m
(ki + 1). (2.45)

Eventually, if A is a set, x ∈ A and diamA = r then A ⊆ B(x, r), since for every y ∈ A we have
d(x, y) ≤ r.

2.4.4 Exercise

If F is union of a finite number of compact set, say

F =
n⋃

i=1

Fi (2.46)

and Aj , j ∈ J is a collection of open sets such that

F ⊆
⋃
j∈J

Aj (2.47)

then also

Fi ⊆
⋃
j∈J

Aj i = 1, . . . , n (2.48)

holds, so for each i = . . . , n there is a finite subset J̄i of J such that

Fi ⊆
⋃

j∈J̄i

Aj i = 1, . . . , n; (2.49)

the set J̄ = ∪n
j=1J̄i is also finite, and

F ⊆
⋃
j∈J̄

Aj . (2.50)

2.4.5 Exercise

First, we observe that for every x, y, h ∈ X we have d(x, y) = d(x+ h, y + h), since

d(x, y) = sup
n∈N

|yn − xn| = sup
n∈N

|(yn + hn)− (xn + hn)| =

= sup
n∈N

|(y + h)n − (x+ h)n| = d(x+ h, y + h).

Then, that

B̄(x, ε) ⊆
n⋃

k=1

B(xk, δ) (2.51)

if and only if

B̄(0, ε) ⊆
n⋃

k=1

B(xk − x, δ). (2.52)
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Indeed suppose the latter inclusion holds. Then y ∈ B̄(x, ε) ⇒ d(x, y) ≤ ε⇒ d(0, y− x) ≤ ε⇒ y− x ∈
B̄(0, ε) so

y − x ∈
n⋃

k=1

B(xk − x, δ) (2.53)

and there is k such that d(xk − x, y − x) = d(xk, y) < δ whence y ∈ B(xk, δ) and

y ∈
n⋃

k=1

B(xk, δ) (2.54)

and the former inclusion also holds. The same to prove that the former inclusion implies the latter
one.

So we have proved that for every x ∈ X B̄(x, ε) is totally bounded if and only if B̄(0, ε) is totally
bounded.

Now we prove that X is complete. Take x(k) in X: that is, x(k) is a sequence, whose elements are
sequences of complex numbers; suppose x(k) is Cauchy, that is, for every δ > 0 there is N ∈ N such
that h, l ≥ N implies d(x(h), x(l)) = supn∈N

∣∣∣x(h)
n − x

(l)
n

∣∣∣ < δ. This means that for every n ∈ N the

sequence in C: k 7→ x
(k)
n is Cauchy, and, since C is complete, there is a complex number xn such that

lim
k→+∞

x(k)
n = xn. (2.55)

Now we show that x(k) converges to x in X: again since x(k) is Cauchy, for every δ > 0 there is N ∈ N
such that h, l ≥ N implies d(x(h), x(l)) < δ, in particular, for every h ≥ N and for every n ∈ N

lim
l→+∞

∣∣∣x(h)
n − x(l)

n

∣∣∣ = ∣∣∣x(h)
n − xn

∣∣∣ < δ (2.56)

which shows that for every h ≥ N

d(x(h)
n , xn) = sup

n∈N

∣∣∣x(h)
n − xn

∣∣∣ < δ. (2.57)

Since we proved that X is complete and B̄(0, ε) is closed in X, B̄(0, ε) is also complete.
Now define the sequence x(k) as:

x(k)
n =

{
ε if n = k
0 if n 6= k

. (2.58)

Clearly for every k ∈ N x(k) ∈ B̄(0, ε) and if h 6= k then d(x(k), x(h)) = ε, so for any point x ∈ B̄(0, ε)
the ball B(x, ε/2) contains at most only one point x(k), and there is no finite number of such balls that
contains all B̄(0, ε).

2.4.6 Exercise

Suppose A is a totally bounded subset of a metric space (X, d) and choose ε > 0. There are points
xk, k = 1, . . . , n in A such that

A ⊆
n⋃

k=1

B
(
xk,

ε

2

)
(2.59)

so

A ⊆
n⋃

k=1

B̄
(
xk,

ε

2

)
⊆

n⋃
k=1

B (xk, ε) . (2.60)

2.5 Continuity

2.5.1 Exercise

(a) ⇒ (b) Take ε > 0. Since f is continuous at a, there is δ such that 0 < d(a, x) < δ ⇒ ρ(α, f(x)) < ε.
So x ∈ BX(a, δ) ⇒ f(x) ∈ BΩ(α, ε) ⇒ x ∈ f−1(BΩ(α, ε)).
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(b) ⇒ (c) Take xn inX such that limxn = a and ε > 0. By hypothesis there is a ball BX(a, δ) such that
BX(a, δ) ⊆ f−1(BΩ(α, ε)) and there is N ∈ N such that n ≥ N ⇒ d(a, xn) < δ ⇒ xn ∈ BX(a, δ)
so n ≥ N ⇒ f(xn) ∈ BΩ(α, ε) ⇒ ρ(α, xn) < ε.

(c) ⇒ (a) Suppose f is not continuous at a, that is, there is ε > 0 such that for every δ > 0 there is
x ∈ X such that d(a, x) < δ and ρ(α, f(x)) ≥ ε. In particular for every n ∈ N we can choose
xn ∈ X such that d(a, xn) < 1/n and ρ(α, f(xn)) ≥ ε. Clearly limxn = a but f(xn) either has
no limit or its limit is not α.

2.5.2 Exercise

If f, g : X → C are uniformly continuous maps for every ε > 0 there are δ1 > 0 and δ2 > 0 such that
for each x, y ∈ X d(x, y) < δ1 ⇒ |f(x)− f(y)| < ε/2 and d(x, y) < δ2 ⇒ |g(x)− g(y)| < ε/2. Then for
each x, y ∈ X d(x, y) < min {δ1, δ2} ⇒ |(f + g)(x)− (f + g)(y)| = |(f(x)− f(y)) + (g(x)− g(y))| ≤
|f(x)− f(y)|+ |g(x)− g(y)| < ε.

If f, g : X → C are Lipschitz maps there are M1 > 0,M2 > 0 such that for all x, y ∈ X
|f(x)− f(y)| ≤M1d(x, y) and |g(x)− g(y)| ≤M2d(x, y), so |(f + g)(x)− (f + g)(y)| = |(f(x)− f(y)) + (g(x)− g(y))| ≤
M1d(x, y) +M2d(x, y) = (M1 +M2)d(x, y).

2.5.3 Exercise

If f, g : X → C are bounded uniformly continuous maps then there are M1 > 0 and M2 > 0 such
that for every x ∈ X we have |f(x)| ≤ M1 and |g(x)| ≤ M2; furthermore for every ε > 0 there are
δ1 > 0 and δ2 > 0 such that for each x, y ∈ X d(x, y) < δ1 ⇒ |f(x)− f(y)| < ε/(M1 + M2) and
d(x, y) < δ2 ⇒ |g(x)− g(y)| < ε/(M1 +M2).

Now if d(x, y) < min {δ1, δ2}

|(fg)(x)− (fg)(y)| = |[f(x)− f(y)]g(x) + [g(x)− g(y)]f(y)| ≤
≤ |f(x)− f(y)| |g(x)|+ |g(x)− g(y)| |f(y)| ≤

≤M1
ε

M1 +M2
+M2

ε

M1 +M2
= ε.

If f, g : X → C are bounded Lipschitz maps there are M1 > 0 and M2 > 0 such that for every
x ∈ X we have |f(x)| ≤ M1 and |g(x)| ≤ M2; furthermore there are N1 > 0, N2 > 0 such that for all
x, y ∈ X |f(x)− f(y)| ≤ N1d(x, y) and |g(x)− g(y)| ≤ N2d(x, y).

So

|(fg)(x)− (fg)(y)| = |[f(x)− f(y)]g(x) + [g(x)− g(y)]f(y)| ≤
≤ N1d(x, y)M1 +N2d(x, y)M2 =
= (N1M1 +N2M2)d(x, y).

2.5.4 Exercise

If g : X → Y and f : Y → Z are uniformly continuous maps, for every ε > 0 there is δ > 0 such that
dY (x, y) < δ ⇒ dZ(f(x), f(y)) < ε, and there is θ > 0 such that dX(u, v) < θ ⇒ dY (g(u), g(v)) < δ, so
dX(u, v) < θ ⇒ dZ(f(g(u))− f(g(v))) = dZ((f ◦ g)(u)− (f ◦ g)(v)) < ε.

If f : X → Y and g : Y → Z are Lipschitz maps, there are M and N such that dZ(f(x), f(y)) ≤
NdY (x, y) for every x, y ∈ Y and dY (g(u), g(v)) ≤MdX(u, v) for every u, v ∈ X, so

dZ((f ◦ g)(u), (f ◦ g)(v)) = dZ(f(g(u)), f(g(v))) ≤
≤ NdY (g(u), g(v)) ≤ NMdX(u, v).

2.5.5 Exercise

Take ε > 0. Since f is uniformly continuous, there is δ such that d(x, y) < δ ⇒ d(f(x), f(y)) < ε; since
xn is a Cauchy sequence there is n̄ ∈ N such that n ≥ n̄,m ≥ n̄⇒ d(xn, xm) < δ ⇒ d(f(xn), f(xm)) <
ε.

No. Take X = R − {0}, Ω = R, xn = 1/n, f(x) = 1/x. Clearly xn is a Cauchy sequence, since
it is convergent in R, and f is continuous, but f(xn) = n is not a Cauchy sequence, since it is not
convergent.
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2.5.6 Exercise

Since D is dense in X, for every x ∈ X there is a sequence xn in D such that limxn = x. Exercise
5 allows to say that f(xn) is a Cauchy sequence in Ω, and since Ω is complete, f(xn) is convergent.
Let’s show that limxn = lim yn ⇒ lim f(xn) = lim f(yn). Say l = limxn = lim yn, and take ε > 0.
Since f is uniformly continuous, there is δ such that d(x, y) < δ ⇒ d(f(x), f(y)) < ε, and there
are N1 ∈ N and N2 ∈ N such that n ≥ N1 ⇒ d(l, xn) < δ/2 and m ≥ N2 ⇒ d(l, ym) < δ/2. So
k ≥ max {N1, N2} ⇒ d(xk, yk) ≤ d(l, xk) + d(l, yk) = δ and k ≥ max {N1, N2} ⇒ d(f(xk), f(yk)) < ε,
which yields also d(limxk, lim yk) < ε. Since ε is any positove real number, this proves that the two
limits are equal.

Now we can define g : X → Ω as g(x) = lim f(xk) where xk is any sequence in D such that
limxk = x. To see that g|D = f is easy: if x ∈ D take xk = x for all k ∈ N . We have still to
show that g is uniformly continuous. Take ε > 0; since f is uniformly continuos there is δ such that
d(u, v) < δ ⇒ d(f(u), f(v)) < ε for any two points u, v ∈ D; take x, y ∈ X such that d(x, y) < δ/3,
and let xk, yk be sequences in D such that limxk = x, lim yk = y, so there are N1 ∈ N and N2 ∈ N
such that n ≥ N1 ⇒ d(x, xn) < δ/3 and m ≥ N2 ⇒ d(y, ym) < δ/3; then if N = max {N1, N2} we
have k ≥ N ⇒ d(xk, yk) ≤ d(x, xk) + d(x, y) + d(y, yk) < δ. So for k ≥ N we have also d(g(x), g(y)) ≤
d(g(x), f(xk)) + d(f(xk), f(yk)) + d(g(y), f(yk)) < d(g(x), f(xk)) + ε + d(g(y), f(yk)). Since this in-
equality holds for every k ≥ N , eventually we get, for every x, y ∈ X such that d(x, y) < δ/3,
d(g(x), g(y)) < lim[d(g(x), f(xk)) + ε+ d(g(y), f(yk))] = ε.

2.5.7 Exercise

Of course it is enough to prove the statement in the case that the polygon P is made of only one
segment. Let L = d(P,C − G). Since C − G is closed, P is compact by Theorem 4.10, and C − G
and P are disjoint, then L > 0. Take n ∈ N such that r = d(a, b)/n < L/2, put x0 = a, xn = b
and choose n − 1 points xi 1 ≤ i ≤ n − 1 on P such that d(xi, xi+1) = r, 0 ≤ i ≤ n − 1. We have
B(xi, L) ⊆ G, 0 ≤ i ≤ n− 1 and since r < L also xi+1 ∈ B(xi, L), 0 ≤ i ≤ n− 1. Now it is obvious that
xi and xi+1 can be joined by a polygon which is composed of one line segment parallel to the real axis
and of one line segment parallel to the imaginary axis, so a and b can be joined by a polygon which is
composed of n line segments parallel to the real axis and of n line segments parallel to the imaginary
axis.

N.B. What has Theorem 5.15 got to do with this proof?

2.5.8 Exercise

For every ε > 0 we have

X ⊆
⋃

ω∈Ω

f−1
(
BΩ

(
ω,
ε

2

))
; (2.61)

since this is an open cover of X, which is compact and so sequentially compact by Theorem 4.9,
Lebesgue’s Covering Lemma says that there is a δ such that for every x ∈ X we have BX(x, δ) ⊆
f−1(BΩ(ω, ε/2)) for some ω ∈ Ω. Now if x, y ∈ X are such that dX(x, y) < δ, surely y ∈ BX(x, δ),
so both x ∈ f−1(BΩ(ω, ε/2)) and y ∈ f−1(BΩ(ω, ε/2)) hold for some ω ∈ Ω, which implies both
f(x) ∈ BΩ(ω, ε/2) and f(y) ∈ BΩ(ω, ε/2), that is, dΩ(f(x), f(y)) < ε.

2.5.9 Exercise

If X is disconnected, then X = Y ∪ Z where Y and Z are open, disjoint and not empty; clearly, they
are also closed. By Proposition 4.3 Y is compact (also Z, but we don’t need it). There are two points
y ∈ Y and z ∈ Z. Now take points x0, . . . , xn with x0 = y and xn = z. Surely there is k̄ such that xk̄

is the last among these points which belongs to Y , that is

k̄ = max {k ∈ N | xk ∈ Y } (2.62)

so xk ∈ Z if k > k̄. By Theorem 5.17 r = d(Y,Z) > 0, then d(xk̄, xk̄+1) ≥ r. Conclusion: no
matter how the points xk are chosen, there are always two of them whose sisctance is not less than r,
contradicting the hypothesis.
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2.5.10 Exercise

If x ∈ X there is a sequence xn in D such that limxn = x. So lim f(xn) = f(x) and lim g(xn) = g(x),
since f and g are continuous. But for every n ∈ N we have f(xn) = g(xn), since xn ∈ D, so f(x) = g(x).

That the function whose existence is proved in Exercise 6 is unique is an immediate consequence.

2.6 Uniform convergence

2.6.1 Exercise

Exactly as in the proof of Theorem 6.1. Take ε > 0, since f = lim fn, there is n such that
ρ(f(x), fn(x)) < ε/3 for all x ∈ X; since fn is uniformly continuous, there is δ such that d(x, y) < δ im-
plies ρ(fn(x), fn(y)) < ε/3, so if d(x, y) < δ we have ρ(f(x), f(y)) ≤ ρ(f(x), fn(x)) + ρ(fn(x), fn(y)) +
ρ(f(y), fn(y)) < ε.

If there are Mn such that ρ(fn(x), fn(y) ≤ Mnd(x, y) for every x, y ∈ X, supn∈N Mn = M and
f = lim fn, then for every x, y ∈ X and for every n ∈ N

ρ(f(x), f(y)) ≤ ρ(f(x), fn(x)) + ρ(fn(x), fn(y)) + ρ(f(y), fn(y)) ≤
≤ ρ(f(x), fn(x)) + ρ(f(y), fn(y)) +Md(x, y)

so also

ρ(f(x), f(y)) ≤ lim[ρ(f(x), fn(x)) + ρ(f(y), fn(y)) +Md(x, y)] = Md(x, y). (2.63)

Take X = [0, 1], Ω = R, both with the Euclidean distance, and fn(x) =
√
x+ 1/n. Each fn is

Lipschitz, since for x ∈ [0, 1]

|fn(x)− fn(y)| ≤
√
n

2
|x− y| (2.64)

(note that supMn = +∞), lim fn(x) =
√
x and the convergence is uniform since for x ∈ [0, 1]∣∣∣∣∣

√
x+

1
n
−
√
x

∣∣∣∣∣ ≤
√

1
n

(2.65)

but the limit f is not Lipschitz; for f(x) − f(0) =
√
x, and if for an M we had

√
x ≤ Mx then

1/
√
x ≤M for every x ∈ [0, 1], which clearly is false.



Chapter 3

Elementary Properties and
Examples of Analytic Functions

3.1 Power series

3.1.1 Exercise

Using the Identity A.1 we have

k∑
n=0

|cn| =
k∑

n=0

∣∣∣∣∣
n∑

h=0

ahbn−h

∣∣∣∣∣ ≤
k∑

n=0

n∑
h=0

|ah| |bn−h| =
k∑

n=0

k−n∑
h=0

|an| |bh| ≤

≤
k∑

n=0

k∑
h=0

|an| |bh| =
k∑

n=0

|an|
k∑

h=0

|bh|

and this shows that
∑
cn is absolutely convergent.

Now, let an = xn + iyn and bn = un + ivn. Then the series
∑
xn,

∑
yn,

∑
un,

∑
vn are all

absolutely convergent, since for any complex number z we have Re z ≤ |z| and Im z ≤ |z|. Let

+∞∑
k=0

xk = X,

+∞∑
k=0

yk = Y,

+∞∑
k=0

uk = U,

+∞∑
k=0

vk = V. (3.1)

Now

ck =
k∑

h=0

ahbk−h =
k∑

h=0

(xh + iyh)(uk−h+ivk−h
) =

=

(
k∑

h=0

xhuk−h −
k∑

h=0

yhvk−h

)
+ i

(
k∑

h=0

yhuk−h +
k∑

h=0

xhvk−h

)

and

n∑
k=0

ck =

(
n∑

k=0

k∑
h=0

xhuk−h −
n∑

k=0

k∑
h=0

yhvk−h

)
+

+ i

(
n∑

k=0

k∑
h=0

yhuk−h +
n∑

k=0

k∑
h=0

xhvk−h

)
.

As it is known from the real case, the four series above converge to the corrisponding products, that is

+∞∑
k=0

ck = (XU − Y V ) + i(Y U −XV ) = (X + iY )(U + iV ) =

=

(
+∞∑
k=0

ak

)(
+∞∑
k=0

bk

)
.
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3.1.2 Exercise

What is left to prove follows from Proposition 1.5 and the corresponding statement for the sum of two
absolutely convergent series.

3.1.3 Exercise

Straightforwardly:

lim sup(an + bn) = lim sup
n≥k

{an + bn} ≤ lim
(

sup
n≥k

{an}+ sup
n≥k

{bn}
)

=

= lim sup an + lim sup bn.

The same for lim inf.

3.1.4 Exercise

Even straightforwardlier: for every k ∈ N it is obvious that

inf
n≥k

{an} ≤ sup
n≥k

{an} (3.2)

whence

lim inf
n≥k

{an} ≤ lim sup
n≥k

{an} . (3.3)

3.1.5 Exercise

Let’s show that lim inf an ≥ a. If li = lim inf an < a, then there would be N such that

inf
n≥N

{an} <
a+ li

2
(3.4)

which implies that for every k ≥ N there is k̄ ≥ k such that

ak̄ <
a+ li

2
< a (3.5)

so it couldn’t be a = lim an.
Analogously lim sup an ≤ a, so lim inf an ≥ lim sup an. Since the opposite inequality always holds,

this proves that lim inf an = lim sup an.

3.1.6 Exercise

(a) lim n
√
|an| = |a|, so R = 1

|a| .

(b) lim n

√∣∣an2
∣∣ = lim |a|n so

• R = +∞ if |a| < 1

• R = 0 if |a| > 1

• R = 1 if |a| = 1

(c) lim n
√
|kn| = |k| so R = 1

|k| .

(d) The coefficients are: ak =
{

1 if k = n! for some n ∈ N
0 otherwise . So k

√
|ak| has a subsequence which

takes always the value 1 and a subsequence which takes always the value 0 . Hence lim sup k
√
|ak| =

1 and R = 1.
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3.1.7 Exercise

The coefficients of this series are:

ak =
{

(−1)n

n if k = n(n+ 1) for some n ∈ N
0 otherwise

(3.6)

and accordingly

k
√
|ak| =

{
1

n
1

n(n+1)
if k = n(n+ 1) for some n ∈ N

0 otherwise
. (3.7)

Then for any h ∈ N, h ≥ 2

sup
k≥h

{
k
√
|ak|
}

=
1

n
1

n(n+1)
if n(n+ 1) ≤ h < (n+ 1)(n+ 2) (3.8)

since for n ≥ 2 the sequence n
1

n(n+1) is decreasing, as can be easily seen deriving the function x
1

x(x+1) .
So lim sup k

√
|ak| = 1.

If z = 1, or z = −1, being n(n+ 1) always even, the series becomes

+∞∑
n=1

(−1)n

n
(3.9)

which is convergent by Leibnitz criterion.
If z = i, the series becomes

1− 1
2
− 1

3
+

1
4

+
1
5
− · · · =

+∞∑
n=0

(−1)n 4n+ 1
2n(2n+ 1)

(3.10)

which again is convergent by Leibnitz criterion.

3.2 Analytic functions

3.2.1 Exercise

Writing explicitly the real and immaginary parts of the function:

f(x+ iy) = u(x, y) + iv(x, y) (3.11)

where

u(x, y) = x2 + y2

v(x, y) = 0

we get

ux(x, y) = 2x
uy(x, y) = 2y

and

vx(x, y) = 0
vy(x, y) = 0

so the Cauchy-Riemann equations can be satisfied only for (x, y) = (0, 0).
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3.2.2 Exercise

Suppose a > 0 and b > 0. Since lim bn = b and lim sup an = a, then ∀η > 0∃n1 : n ≥ n1 ⇒ bn < b+ η
and ∀η > 0∃n2 : n ≥ n2 ⇒ an < a+ η.

Now

anbn = bn(an − a) + a(bn − b) + ab. (3.12)

Since b > 0, there is an n3 ∈ N such that n ≥ n3 ⇒ bn > 0, so for n ≥ max {n1, n2, n3} we have

anbn ≤ bnη + aη + ab. (3.13)

Furthermore, there is M > 0 such that bn ≤M for every n, so

anbn ≤ (M + a)η + ab. (3.14)

If ε > 0, take

η =
ε

M + a
(3.15)

and for n ≥ max {n1, n2, n3} we have

anbn ≤ ab+ ε. (3.16)

Since lim bn = b and lim sup an = a, then ∀θ > 0∃n1 : n ≥ n1 ⇒ bn > b− θ and ∀θ > 0,∀n̄ ∈ N∃n2 :
n2 > n̄ ∧ an2 > a− θ, so for n̄ ≥ max {n1, n3} there is n2 > n̄ such that

an2bn2 ≥ −bnη − aη + ab. (3.17)

Furthermore, there is n4 such that n ≥ n4 ⇒ bn > b/2; so now we have that for n̄ ≥ max {n1, n3, n4}
there is n2 > n̄ such that

an2bn2 ≥ −
(
b

2
+ a

)
η + ab. (3.18)

If ε > 0, take

η =
ε

b/2 + a
(3.19)

and for n̄ ≥ max {n1, n3, n4} there is n2 > n̄ such that

an2bn2 ≥ ab− ε. (3.20)

Of course in the same way it can be proved that, under the same hypotheses, also lim inf(anbn) =
lim bn lim inf an holds.

Now suppose a < 0 and b > 0. Then

−a = lim inf(−an) > 0 (3.21)

and for what we just proved,

lim sup(anbn) = − lim inf(−anbn) = ab. (3.22)

If b < 0, then −b = lim(−bn) > 0 and

lim sup(anbn) = − lim inf(−anbn) = − lim inf(an(−bn)) =
= − lim inf an lim(−bn) = −b lim inf an

supposing both lim inf an and lim sup an are finite.

3.2.3 Exercise

What’s that supposed to mean? That is, starting from where? After all, it’s known from real analysis,
isn’t it?
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3.2.4 Exercise

Since

cos z =
+∞∑
n=0

(−1)n z2n

(2n)!
(3.23)

then, by Proposition 2.5

(cos z)′ =
+∞∑
n=1

(−1)n2n
z2n−1

(2n)!
=

+∞∑
n=1

(−1)n z2n−1

(2n− 1)!
= − sin z. (3.24)

Since

sin z =
+∞∑
n=1

(−1)n+1 z2n−1

(2n− 1)!
(3.25)

then, by Proposition 2.5

(sin z)′ =
+∞∑
n=1

(−1)n+1(2n− 1)
z2n−2

(2n− 1)!
=

+∞∑
n=1

(−1)n+1 z2n−2

(2n− 2)!
=

=
+∞∑
n=0

(−1)n z2n

(2n)!
.

3.2.5 Exercise

We have

eiz =
+∞∑
n=0

(iz)n

n!
=

+∞∑
n=0

in
zn

n!
=

+∞∑
k=0

i2k z
2k

2k!
+

+∞∑
k=0

i2k+1 z2k+1

(2k + 1)!
=

=
+∞∑
k=0

(−1)k z
2k

2k!
+ i

+∞∑
k=0

(−1)k z2k+1

(2k + 1)!
= cos z + i sin z,

e−iz =
+∞∑
n=0

(−iz)n

n!
=

+∞∑
n=0

(−i)n z
n

n!
=

=
+∞∑
k=0

(−i)2k z
2k

2k!
+

+∞∑
k=0

(−i)2k+1 z2k+1

(2k + 1)!
=

=
+∞∑
k=0

(−1)k z
2k

2k!
− i

+∞∑
k=0

(−1)k z2k+1

(2k + 1)!
= cos z − i sin z.

3.2.6 Exercise

1. If ex+iy = ex(cos y + i sin y) = i, then it must be ex cos y = 0, ex sin y = 1, and ex = |i| = 1, so
x = 0; then cos y = 0 and sin y = 1, so y = π

2 + 2kπ. Hence

{z ∈ C | ez = i} =
{
i
(π

2
+ 2kπ

)
| k ∈ Z

}
. (3.26)

2. If ex+iy = ex(cos y + i sin y) = −1 we have again x = 0, and cos y = −1, sin y = 0, hence

{z ∈ C | ez = −1} = {i (π + 2kπ) | k ∈ Z} . (3.27)

3. Now

{z ∈ C | ez = −i} =
{
i

(
3π
2

+ 2kπ
)
| k ∈ Z

}
. (3.28)

4. Finally

{z ∈ C | ez = 0} = {i (2kπ) | k ∈ Z} . (3.29)
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3.2.7 Exercise

On the one hand

cos(z + w) =
ei(z+w) + e−i(z+w)

2
=
eizeiw + e−ize−iw

2
(3.30)

on the other hand

cos z cosw =
eiz + e−iz

2
eiw + e−iw

2
=

=
eizeiw + e−ize−iw + e−izeiw + eize−iw

4

sin z sinw =
eiz − e−iz

2i
eiw − e−iw

2i
=

=
−eizeiw − e−ize−iw + e−izeiw + eize−iw

4

so cos(z + w) = cos z cosw − sin z sinw. In a similar way it is proved that sin(z + w) = sin z cosw +
cos z sinw.

3.2.8 Exercise

Of course

tan z =
sin z
cos z

(3.31)

is defined and analytic where cos z 6= 0. Now cos z = 0 means eiz + e−iz = 0, that is e2iz = −1; by
Exercise 6 point 2 that means 2iz = i(π + 2kπ), and

z =
π

2
+ kπ. (3.32)

3.2.9 Exercise

First, observe that if zn → z, then |zn| → |z|: it follows straight from the inequality ||zn| − |z|| ≤
|zn − z|. This yields that rn → r.

Now

zn − z = reiθ
(rn
r
ei(θn−θ) − 1

)
(3.33)

and since zn−z → 0, and reiθ 6= 0, then we must have rn

r e
i(θn−θ)−1 → 0; but rn

r → 1, so ei(θn−θ) → 1,
wich yields (θn − θ) → 2kπ for some k ∈ Z. Since by hypothesis −π < θ < π and −π < θn < π, the
only possibility is (θn − θ) → 0, which means θn → θ.

3.2.10 Exercise

As in Proof of Proposition 2.20, take a ∈ G, s ∈ C such that s 6= 0 and a+s ∈ G. Now g(f(a)) = h(a),
g(f(a+ s)) = h(a+ s) and since h is injective and s 6= 0, we have g(f(a+ s)) 6= g(f(a)) which yields
f(a+ s)− f(a) 6= 0. Now

g(f(a+ s))− g(f(a))
s

=
h(a+ s)− h(a)

s
(3.34)

so

g(f(a+ s))− g(f(a))
f(a+ s)− f(a)

· f(a+ s)− f(a)
s

=
h(a+ s)− h(a)

s
; (3.35)

since f is continuous, f(a+ s) → f(a) as s→ 0, and this gives

lim
s→0

g(f(a+ s))− g(f(a))
f(a+ s)− f(a)

= g′(f(a)) (3.36)

and since g′(f(a)) 6= 0 we finally get that

f ′(a) = lim
s→0

f(a+ s)− f(a)
s

=
h′(a)

g′(f(a))
. (3.37)
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3.2.11 Exercise

Isn’t it obvious? If f is a branch of the logarithm, then ef(z) = z for any z ∈ G. So enf(z) = (ef(z))n =
zn for any z ∈ G.

3.2.12 Exercise

By definition

z
1
2 = e

1
2 log z (3.38)

where log is the principal branch of the logarithm, that is, if

G = C− {z ∈ C | Im z 6= 0 ∨Re z > 0} (3.39)

then log : G→ C, and if z = reiθ with −π < θ < π then log(z) = log(r) + iθ. Then

z
1
2 = e

1
2 log z = e

1
2 (log r+iθ) =

√
r

(
cos
(
θ

2

)
+ i sin

(
θ

2

))
(3.40)

and now

−π
2
<
θ

2
<
π

2
(3.41)

so the real part of this complex number is positive.

3.2.13 Exercise

If log is the principal branch of the logarithm, and

fk(z) = e
1
n log ze

2kπ
n i k = 0, 1, . . . , n− 1 z ∈ G (3.42)

then

(fk(z))n = z (3.43)

and the functions fk are all distinct and analytic on G. On the other hand, if g and h are two any
functios that satisfy the same conditions, then

F (z) =
g(z)
h(z)

(3.44)

defines an analytic function on G, since h(z) 6= 0 on G. Then

F (z)n =
(
g(z)
h(z)

)n

=
g(z)n

h(z)n
= 1 (3.45)

which yields that for any z ∈ G there is an integer k such that 0 ≤ k ≤ n− 1 and

g(z)
h(z)

= e
2kπ

n i. (3.46)

But F is continuous, so ImF is connected, therefore there is one integer k that satisfies the last
condition for all z ∈ G, otherwise ImF would contain at least two distinct isolated points, and would
not be connected. In particular, if f is any function satisfying the wanted conditions, then

f(z)
e

1
n log z

= e
2kπ

n i z ∈ G (3.47)

for some k = 0, 1, . . . , n− 1, so f = fk.

3.2.14 Exercise

Let

f(z) = f(x+ iy) = u(x, y) + iv(x, y) (3.48)

then by hypothesis v = 0 in G. By the Cauchy-Riemann equations

ux = vy = 0
uy = −vx = 0

in G, and since G is connected, it follows that u, and then f , is constant.
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3.2.15 Exercise

Of course, if z 6= 0

exp
(

1
z

)
= exp

(
1

x+ iy

)
= exp

(
x

x2 + y2

)
exp

(
−i y

x2 + y2

)
. (3.49)

The function

f(x) =
x

x2 + y2
(3.50)

takes any real value k on the circle(
x− 1

2k

)2

+ y2 − 1
4k2

= 0 (3.51)

and the function

f(x) =
y

x2 + y2
(3.52)

takes any real value h on the circle(
y − 1

2h

)2

+ x2 − 1
4h2

= 0. (3.53)

All these circles go through (0, 0), which means that for any r > 0, in the set {0 < |z| < r} the function
exp(1/z) can take any possible value reiθ with r > 0. That is, A = C− 0.

3.2.16 Exercise

For instance

G = {z ∈ C | Im z 6= 0 ∨Re z > 1 ∨Re z < −1} (3.54)

and

f(z) = exp
(

log(1− z2)
2

)
g(z) = exp

(
log(1− z2)

2
+ πi

)
.

To see that f(z)2 = g(z)2 = 1− z2 is trivial.
Now what can possibly mean that G is maximal? Maybe that if H ⊇ G, h : H → C such that

h(z)2 = 1 − z2 in H and for instance h|G = f , then H = G. To prove this, suppose there is z0 ∈ H
but z0 /∈ G. Then z0 = (x, 0) with either x > 1 or x < −1. Say x > 1. For −π < θ < π take

h(θ) = exp

(
log
(
(x2 − 1)eiθ + 1

)
2

)
; (3.55)

if θ 6= 0 then h(θ) ∈ G, h(0) = x and h is obviously continuous. Now

f(h(θ)) = exp
(

log(1− h(θ)2)
2

)
= exp

(
log(−(x2 − 1)eiθ)

2

)
=

= exp
(

log((x2 − 1)ei(θ−π))
2

)
.

If 0 < θ < π then −π < θ − π < 0 so

f(h(θ)) = exp
(

1
2
(
log(x2 − 1) + i(θ − π)

))
(3.56)

and

lim
θ→0+

h(θ) = exp
(

1
2

log(x2 − 1)− π

2
i

)
=
√
x2 − 1 e−

π
2 i = −i

√
x2 − 1. (3.57)
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If −π < θ < 0 then −2π < θ − π < −π and 0 < θ + π < π so

f(h(θ)) = exp
(

1
2
(
log(x2 − 1) + i(θ + π)

))
(3.58)

and

lim
θ→0−

h(θ) = exp
(

1
2

log(x2 − 1) +
π

2
i

)
=
√
x2 − 1 e

π
2 i = i

√
x2 − 1. (3.59)

What we have shown is that h cannot be continuous in (x, 0) if this point is in H but not in G, so if
H is continuous G is maximal. As for analyticity, it follows from log’s and exp’s.

3.2.17 Exercise

Is it really an exercise? Well, G = {z ∈ C | Im z 6= 0 ∨Re z < 1}, f : G→ C,

f(z) = exp
(

1
2

log(1− z)
)
. (3.60)

3.2.18 Exercise

That doesn’t seem much true. Say

f(z) = exp(a log(x))
g(z) = exp(b(log(x) + 2πi))

(by the way, here G needs to be connected) then

f(z)g(z) = exp((a+ b) log(z) + b2πi) (3.61)

and the latter deosn’t look a bit like a branch of za+b.
For instance, take a = b = 1

2 :

f(z)g(z) = exp
((

1
2

+
1
2

)
log(z) +

1
2
(2πi)

)
= zeπi = −z (3.62)

and there is no reasonable way to consider −z a s a branch of z
1
2+ 1

2 = z1 = z.

Maybe we need to add the hypothesis that f(z) and g(z) are the same branch of za and zb respec-
tively, that is,

f(z) = exp(a lg(x))
g(z) = exp(b lg(x))

where lg is any branch of the logarithm on G. Now (even if G is not connected)

f(z)g(z) = exp((a+ b) lg(z)) (3.63)

and so fg is a branch of za+b. The same for f/g.
As well, let log : D → C be a branch of logarithm, a ∈ C, b ∈ C and

f : D → C
z 7→ exp(a log z)

(3.64)

g : D → C
z 7→ exp(b log z)

(3.65)

so that f and g are branches of za and zb respectively. To get a branch of zab it would seem fair enough
to consider g ◦ f|f−1(D), but that is not the case. To see this, let D = {z ∈ C | Re(z) > 0 ∨ Im(z) 6= 0},
log : D → C be the principal branch of logrithm, a = 2, b = 1

2 and z̄ = −
√

2
2 + i

√
2

2 = exp(i 34π).
Remark that if z ∈ D then Im(log(z)) ∈ (−π, π). Clearly z̄ ∈ D, so

f(z̄) = exp(2 log(z̄)) = exp
(
i
3
2
π

)
= −i. (3.66)
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Now −i ∈ D, so z̄ ∈ f−1(D), but log(−i) = −iπ
2 and

g(f(z̄)) = exp
(

1
2

log(−i)
)

= exp
(
−iπ

4

)
= −z̄. (3.67)

But ab = 1, so g ◦ f|f−1(D) cannot be a branch of zab.
The proper restrition for f is to the set

E = {z ∈ D | a log(z) ∈ Img(log)} (3.68)

that is, z ∈ E ⇐⇒ Im(a log(z)) ∈ (−π, π). Let z ∈ E. By the definition of logarithm it follows that
there exists a k ∈ Z such that

log (exp (a log(z))) = a log(z) + i2kπ; (3.69)

but Im (log (exp (a log(z))))− Im (a log(z)) < 2π, so

log (exp (a log(z))) = a log(z). (3.70)

Then

g(f(z)) = exp (b log (exp(a log(z)))) = exp(ab log(z)) (3.71)

which means that g ◦ f|E is a branch of zab.

3.3 Analitic functions as mappings. Möbius transformations

3.3.1 Exercise

3.3.2 Exercise

3.3.3 Exercise

3.3.4 Exercise

3.3.5 Exercise

3.3.6 Exercise

(a) 7 + i

(b) −2i·2+2i
−i·2+i·(1+i) = −2i

−1−i = 2+2i
2 = 1 + i

(c) −2i
1−i = 2−2i

2 = 1− i

(d) 1−i−1−i
1−i = −2i

1−i = 1− i

3.3.7 Exercise

Observe that T must be a Möbius transformation. It follows that a = c implies b 6= d, a = 0 implies
b 6= 0, and c = 0 implies d 6= 0. Now, allowing that y/w = ∞ if w = 0 and z 6= 0, we have

T (z) = 1 if z = b−d
c−a

T (z) = 0 if z = − b
a

T (z) = ∞ if z = −d
c

(3.72)

so

T (z) =
(
z,
b− d

c− a
,− b

a
,−d

c

)
. (3.73)
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3.3.8 Exercise

We know that

T (z) =
(
z,
b− d

c− a
,− b

a
,−d

c

)
. (3.74)

Since T (R∞) = R∞ we have b−d
c−a ∈ R∞, − b

a ∈ R∞, −d
c ∈ R∞. Then if c− a 6= 0, a 6= 0, c 6= 0

T (z) =

(
b−d
c−a + d

c

)
z −

(
d−b
a−c −

d
c

)
b
a(

b−d
c−a + b

a

)
z −

(
d−b
a−c −

b
a

)
d
c

(3.75)

if c− a = 0

T (z) =
z + b

a

z + d
c

(3.76)

if a = 0

T (z) =
b−d
c−a + d

c

z + d
c

(3.77)

if c = 0

T (z) =
z + b

a
b−d
c−a + b

a

. (3.78)

3.3.9 Exercise

If T is a Möbius transformation, |a|2 + |b|2 = |c|2 + |d|2 and ab = cd then T (Γ) = Γ. Indeed, if |z| = 1
then

|T (z)| =
∣∣∣∣az + b

cz + d

∣∣∣∣ = |az + b|
|cz + d|

=
|az|2 + |b|2 + 2 Re(azb)
|cz|2 + |d|2 + 2 Re(czd)

=

=
|a|2 |z|2 + |b|2 + 2 Re(azb)
|c|2 |z|2 + |d|2 + 2 Re(czd)

=
|a|2 + |b|2 + 2 Re(azb)
|c|2 + |d|2 + 2 Re(czd)

= 1.

If T (Γ) = Γ then T is a Möbius transformationand

|T (1)| =
∣∣∣∣a+ b

c+ d

∣∣∣∣ = |a+ b|
|c+ d|

=
|a|2 + |b|2 + 2 Re(ab)
|c|2 + |d|2 + 2 Re(cd)

= 1,

|T (−1)| =
∣∣∣∣−a+ b

−c+ d

∣∣∣∣ = |−a+ b|
|−c+ d|

=
|a|2 + |b|2 − 2 Re(ab)
|c|2 + |d|2 − 2 Re(cd)

= 1,

|T (i)| =
∣∣∣∣ ia+ b

ic+ d

∣∣∣∣ = |ia+ b|
|ic+ d|

=
|a|2 + |b|2 + 2 Re(iab)
|c|2 + |d|2 + 2 Re(icd)

=

=
|a|2 + |b|2 − 2 Im(ab)
|c|2 + |d|2 − 2 Im(cd)

= 1

|T (−i)| =
∣∣∣∣−ia+ b

−ic+ d

∣∣∣∣ = |−ia+ b|
|−ic+ d|

=
|a|2 + |b|2 + 2 Re(−iab)
|c|2 + |d|2 + 2 Re(−icd)

=

=
|a|2 + |b|2 + 2 Im(ab)
|c|2 + |d|2 + 2 Im(cd)

= 1

whence

|a|2 + |b|2 + 2 Re(ab) = |c|2 + |d|2 + 2 Re(cd) (3.79)

|a|2 + |b|2 − 2 Re(ab) = |c|2 + |d|2 − 2 Re(cd) (3.80)

|a|2 + |b|2 − 2 Im(ab) = |c|2 + |d|2 − 2 Im(cd) (3.81)

|a|2 + |b|2 + 2 Im(ab) = |c|2 + |d|2 + 2 Im(cd). (3.82)

From 3.79 and 3.80 follows thet |a|2 + |b|2 = |c|2 + |d|2. Then from 3.79 and 3.80 follows that Re(ab) =
Re(cd), from 3.81 and 3.82 that Im(ab) = Im(cd).
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3.3.10 Exercise

Let γ = {z ∈ C | |z| = 1} and

T (z) =
az + b

cz + d
. (3.83)

If T is a Möbius transformation and T (D) = D, then T (γ) = γ. Indeed, T (D) ⊆ T (D) = D since T
is continuous; T (D) is closed, since D is compact and therefore such is T (D), so T (D) ⊇ T (D) = D.
Then T (D) = D. But D = {z ∈ C | |z| ≤ 1}. The last two imply that T (γ) = γ. As seen in Exercise
3.3.9 this implies that |a|2 + |b|2 = |c|2 + |d|2 and ab = cd. Giving γ the orientation C = (1, i,−1), 0
lies in the left of (γ, C):

(0, 1, i,−1) =
0−i
0+1
1−i
1+i

= 1− i (3.84)

so T (0) must lie in the left of (γ, C) as well, that is Im(T (0), 1, i,−1) < 0. But

T (0) =
b

d
(3.85)

and (
b

d
, 1, i,−1

)
=

b
d−i
b
d +1

1−i
1+1

= 1 + i
b− d

b+ d
(3.86)

so

Re

(
b− d

b+ d

)
< 0. (3.87)

But

b− d

b+ d
=
|b|2 − db+ bd− |d|2

|b+ d|2
=
|b|2 − |d|2 + 2 Im(bd)i

|b+ d|2
(3.88)

so 3.87 yields |d| > |b|.
If T is a Möbius transformation and |a|2 + |b|2 = |c|2 + |d|2, ab = cd and |d| > |b|, then T (γ) = γ

and Im(T (0), 1, i,−1) < 0, so T (D) = D.

3.3.11 Exercise

3.3.12 Exercise

3.3.13 Exercise

3.3.14 Exercise

Let c1 and c2 be the centres of the two circles γ1 and γ2. Then a, c1, c2 are aligned and distinct. That
is, c1 − a = α(c2 − a) where α ∈ R. Moreover, α > 0. We can suppose also α > 1, by swapping names
between c1 and c2 if needed.

If

c1 − a = |c1 − a| eiθ

c2 − a = |c2 − a| eiτ

c1 − c2 = |c1 − c2| eiσ

then

|c1 − a| eiθ = α |c2 − a| eiτ (3.89)

and

|c1 − a|
α |c1 − a|

= ei(τ−θ). (3.90)
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Since the left side is real and positive, so must the right side be too, which implies τ = θ. Also

c1 − c2 = c1 − a− (c2 − a) = (α− 1)(c2 − a) (3.91)

where α− 1 > 0, so

|c1 − c2|
(α− 1) |c2 − a|

= ei(σ−τ) (3.92)

and σ = τ .
The translation

T1(z) = z − a (3.93)

takes a in 0. The rotation

T2(z) = e−iσz (3.94)

takes T1(c1) and T1(c2) on the imaginary axis. In fact

T2(T1(c1)) = e−iσ(c1 − a) = e−iσ |c1 − a| eiθ = e−iσ |c1 − a| eiσ = |c1 − a| i
T2(T1(c2)) = e−iσ(c2 − a) = e−iσ |c2 − a| eiτ = e−iσ |c2 − a| eiσ = |c1 − a| i.

Let

d1 = |c1 − a| i
d2 = |c1 − a| i.

Since for any z, w in C |T2(T1(z))− T2(T1(w))| = |z − w|, T2 ◦ T1 takes γ1 onto

Γ1 = {z ∈ C | |z − d1| = |c1 − a|}

and γ2 onto

Γ2 = {z ∈ C | |z − d2| = |c2 − a|} .

The inversion

T3(z) =
1
z

(3.95)

takes the circles Γ1 and Γ2 onto the straight lines r1 : Im z = − 1
2|c1−a| and r2 : Im z = − 1

2|c2−a|
respectively. So T3 ◦ T2 ◦ T1 sends γ1 to r1 and γ2 to r2. Moreover, D is mapped onto the stripe
between r1 and r2.

Let

K =
1
4

(
1

|c1 − a|
+

1
|c2 − a|

)
L =

1
2

(
1

|c2 − a|
− 1
|c1 − a|

)
.

The translation

T4(z) = z +K (3.96)

takes the stripe{
z ∈ C | − 1

2 |c2 − a|
≤ Im z ≤ − 1

2 |c1 − a|

}
(3.97)

onto the stripe{
z ∈ C | − L

2
≤ Im z ≤ L

2

}
(3.98)
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and the dilation

T5(z) =
π

L
(3.99)

takes this last to the stripe{
z ∈ C | − π

2
≤ Im z ≤ π

2

}
. (3.100)

Eventually the funcion

T6(z) =
ez − 1
ez + 1

(3.101)

takes tha last stripe onto the unit disk. Let T = T6 ◦ T5 ◦ T4 ◦ T3 ◦ T2 ◦ T1. The map T takes D onto
the unit circle, and

T (z) =
e

[
π
L

(
1

e−iσ(z−a)
+K

)]
−1

e

[
π
L

(
1

e−iσ(z−a)
+K

)]
+1

(3.102)

or, in the expanded form

T (z) =
e

 π

1
2

(
1

|c2−a| −
1

|c1−a|

) (
1

e−i arg(c1−c2)(z−a)
+ 1

4

(
1

|c1−a|+
1

|c2−a|

))
− 1

e

 π

1
2

(
1

|c2−a| −
1

|c1−a|

) (
1

e−i arg(c1−c2)(z−a)
+ 1

4

(
1

|c1−a|+
1

|c2−a|

))
+ 1

. (3.103)

3.3.15 Exercise

Let

D = {z ∈ C | |z| < 1} , (3.104)

H = {z ∈ C | Re z < 0} (3.105)

and

E = {z ∈ C | 0 < |z| < 1} . (3.106)

The map

T (z) =
z − 1
z + 1

(3.107)

maps D onto H. Then

S(z) = e
z−1
z+1 (3.108)

maps D onto E.
Let’s see some properties of S. Let h < 0. We have

T

(
h

1− h
+

1
1− h

eiθ

)
= h+ i

(1− h) sin θ
1 + cos θ

(3.109)

which means that S maps the circle C1
h centered in

a =
h

1− h
(3.110)

with radius

r =
1

1− h
(3.111)

minus the point −1 into the circle C2
h centered in 0 with radius eh. Moreover

lim
θ→π−

sin θ
1 + cos θ

= +∞ (3.112)

so when the point z approaches −1 on the upper half of the circle C1
h its image S(z) spans infinitely

many times the circle C2
h turning counterclockwise around 0. Also if the point z approaches −1 on the

lower half of the circle C1
h its image S(z) spans infinitely many times the circle C2

h turning clockwise
around 0.
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3.3.16 Exercise

The Möbius transformation

T (z) =
z − 1
z + 1

tekes G onto C − ({z ∈ C | Im(z) = 0,Re(z) ≤ 0} ∪ {1}). Therefore, if log is the principal branch of
the logarithm, the function

g(z) = log(T (z))

takes G onto {z ∈ C | |Im(z)| < π} − {0}. Then

h(z) = exp
(

1
2

log(T (z))
)

takes G onto H = {z ∈ C | Re(z) > 0} − {1}. If √ means the principal branch of the square root,
then h can be written as

h(z) =

√
z − 1
z + 1

.

The Möbius transformation

S(w) =
2w − 1
2w + 1

takes H onto {z ∈ C | |z| < 1} −
{

1
3

}
, so S2 takes H onto the unit circle. Summing up, the analytic

function

f(z) =

2
√

z−1
z+1 − 1

2
√

z−1
z+1 + 1

2

takes G onto the unit circle.

3.3.17 Exercise

Let f(G) ⊆ Γ where Γ is a circle. There is a Möbius transformation T such that T (Γ) = R∞, then
T ◦ f(G) ⊆ R∞, which implies that T ◦ g is constant, and so is f .

3.3.18 Exercise

3.3.19 Exercise

3.3.20 Exercise

Let

α = λa

β = λb

γ = λc

δ = λd.

Then for z ∈ C

T (z) =
λaz + λb

λcz + λd
=
az + b

cz + d
= S(z). (3.113)

Let S = T . From

T−1(w) =
δw − β

−γw + α
(3.114)

follows from all w ∈ C

ST−1(w) =
a δw−β
−γw+α + b

c δw−β
−γw+α + d

=
(aδ − bγ)w + bα− aβ

(cδ − dγ)w + dα− cβ
= w (3.115)
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whence

(cδ − dγ)w2 + (dα− cβ − aδ + bγ)w − bα+ aβ = 0. (3.116)

This implies

cδ − dγ = 0
dα− cβ − aδ + bγ = 0

−bα+ aβ = 0.

whence

c

γ
=
d

δ

a

α
=
b

β
.

Now let

t1 =
c

γ
=
d

δ

t2 =
a

α
=
b

β
.

Then

t1δα− t1γβ − t2αδ + t2βγ = 0 (3.117)

and

(t1 − t2)(αδ − βγ) = 0 (3.118)

which implies, if T is a Möbius transformation, that t1 = t2 and so

α = t−1
1 a

β = t−1
1 b

γ = t−1
1 c

δ = t−1
1 d.

If T is not a Möbius transformation, then it has constant value β
δ , so it must be α = γ = 0,

otherwise T wouldn’t be defined for z = − δ
γ . From T = S follows that S also must have constant value

β
δ , but if S is constant its value is b

d and a = c = 0, so

b

d
=
β

δ
(3.119)

and

b

β
=
d

δ
. (3.120)

3.3.21 Exercise

Well:

S−1TS(S−1(z1)) = S−1(T (z1)) = S−1(z1)

S−1TS(S−1(z2)) = S−1(T (z2)) = S−1(z2).

3.3.22 Exercise

Let T be defined by

T (z) =
az + b

cz + d
. (3.121)
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(a) If T has 0 and ∞ as its only fixed points, then

b

d
= 0

a

c
= ∞

whence

b = 0
c = 0

and

T (z) =
a

d
z. (3.122)

with a 6= d, and it is clear that such a transformation has 0 and ∞ as its only fixed points.

(b) If T has ∞ as its only fixed point, then a
c = ∞ and c = 0. Then

T (z) =
az + b

d
. (3.123)

Now z is a fixed point of T if and only if(a
d
− 1
)
z +

b

d
= 0 (3.124)

so T has no other fixed point if and only if a = d and b 6= 0, that is:

T (z) = z +
b

d
. (3.125)

3.3.23 Exercise

Let T be defined by

T (z) =
az + b

cz + d
. (3.126)

If T (0) = ∞ and T (∞) = 0 then

b

d
= ∞

a

c
= 0

so d = 0 and a = 0, and

T (z) =
b

cz
. (3.127)

If T (z) = az−1 it is obvious that T (0) = ∞ and T (∞) = 0.

3.3.24 Exercise

If T has one fixed point z1, let R be a Möbius transformation such that R(∞) = z1. Then R−1TR has
∞ as its only fixed point. Indeed, R−1TR(∞) = R−1T (z1) = R−1(z1) = ∞, and from R−1TR(z) = z
follows TR(z) = R(z), so R(z) is a fixed point of T , that is R(z) = z1, and z = ∞. Then R−1TR is a
translation, and so is R−1SR. Since two translations commute

R−1TRR−1SR = R−1SRR−1TR (3.128)

that is

R−1TSR = R−1STR (3.129)

whence TS = ST .
If T has two fixed points z1, z2, let R be a Möbius transformationsuch that R(∞) = z1 and R(0) = z2.
Then R−1TR and R−1SR have fixed points∞ and 0, so they are dilations, and since dilations commute,
it follows as in the former case that S and T commute too.
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3.3.25 Exercise

Let M be the group of Möbius transformations. For u, v ∈ C, let

Hu,v = {T ∈M | T (u) = u, T (v) = v} . (3.130)

Then

• T, S ∈ Hu,v ⇒ TS−1 ∈ Hu,v

• T, S ∈ Hu,v ⇒ TS = ST

that is, Hu,v is an abelian subgroup of M.
Every Hu,v is maximal, that is, if G is a subgroup of M and Hu,v ⊂ G then G is not abelian.
Indeed, suppose u 6= v and let R ∈ G and R /∈ Hu,v. If R(u) = u but R(v) 6= v then R does not

commute with any T ∈ Hu,v: TR(v) = RT (v) = R(v) implies that R(v) is a fixed point of T , that is
either R(v) = v or R(v) = u, both cases impossible. The same if R(v) = v but R(u) 6= u. If R(u) 6= u
and R(v) 6= v then RT = TR implies RT (u) = TR(u) = R(u), that is R(u) is a fixed point of T ,
so R(u) = v, and for the same reason R(v) = u. But R must have two fixed points, since if z is a
fixed point of R then z 6= u and z 6= v but RT (z) = TR(z) = T (z), so T (z) is a fixed point of R and
T (z) 6= z because z is not a fixed point of T . Let w be the second fixed point of R. For the same
reason as before, T (z) = w and T (w) = z. But in Hu,v there is only one element which swaps points
in C (see Proposition 8.3.4), so R cannot commute with all the elements of Hu,v.

Now suppose u = v and let R ∈ G and R /∈ Hu,v = Hu,u, T ∈ Hu,u. If R has one fixed point z then
z 6= u and RT = TR implies RT (u) = TR(u) = R(u), so R(u) = u against the hypothesis. If R has
two fixed points, z and w, suppose z = u and w 6= u. Then TR = RT implies RT (w) = TR(w) = T (w)
and T (w) is a fixed point of R. But T (w) = w implies w = u, T (w) = z implies T (w) = u and again
w = u, against the hypothesis. The same if z 6= u and w = u. If z 6= u and w 6= u, then TR = RT
implies RT (u) = TR(u) = R(u), that is R(u) = u, and u = z or u = w, against the hypothesis.

Now, let A be an abelian subgroup of M.
If A contains only elements with the same fixed points or point, then A ⊆ Hu,v for some u, v ∈ C,

either v 6= u or u = v.
If A contains at least two elements T and S with different fixed points z1, z2, and w1, w2, we have

seen that z1 6= z2, w1 6= w2 and {z1, z2} ∩ {w1, w2} = ∅. Furthermore, T (w1) = w2 and S(z1) = z2,
that is, T 2 = S2 = I. Now in A there must be U = ST too, and U 6= S, U 6= T , since, for instance,
ST = S implies T = I, but in A there cannot be any other element of M. Indeed, if R is any Möbius
transformation that commutes with S and T , then R2 = I and each one of S, T,R must swap the
others’ fixed points, so STR has 6 fixed points, that is STR = I and R = ST = U .

Summing up: if A is an abelian subgroup of M then either A ⊆ Hu,v or for some elements u, v ∈ C
with u = v or u 6= v, or A = {I, S, T, U} where S, T, U are elements of M such that S2 = T 2 = U2 = I.

3.3.26 Exercise

(a) We have, for z ∈ C

φ

((
a′ b′

c′ d′

)(
a′′ b′′

c′′ d′′

))
(z) = φ

((
a′a′′ + b′c′′ a′b′′ + b′d′′

c′a′′ + d′c′′ c′b′′ + d′d′′

))
(z) = (3.131)

=
(a′a′′ + b′c′′)z + a′b′′ + b′d′′

(c′a′′ + d′c′′)z + c′b′′ + d′d′′
(3.132)

and

φ

((
a′ b′

c′ d′

))
◦ φ
((

a′′ b′′

c′′ d′′

))
(z) =

a′ a
′′z+b′′

c′′z+d′′ + b′

c′ a
′′z+b′′

c′′z+d′′ + d′
(3.133)

=
(a′a′′ + b′c′′)z + a′b′′ + b′d′′

(c′a′′ + d′c′′)z + c′b′′ + d′d′′
. (3.134)

If for all z ∈ C

φ

((
a b
c d

))
(z) = z (3.135)

then for all z ∈ C

z2 + (d− a)z − b = 0 (3.136)
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whence
c = 0
b = 0
a = d

(3.137)

and

Kerφ =
{(

a 0
0 a

)
| a ∈ C

}
. (3.138)

It is obvious that Img φ = M.

(b) We only need show that for any A ∈ GL2(C) there is A′ ∈ SL2(C) such that φ(A′) = φ(A). Let
∆ ∈ C such that ∆2 = detA, and

A′ =
1
∆
A. (3.139)

Clearly φ(A′) = φ(A) and detA′ = 1
∆2 detA = 1. Finally

Kerφ ∩ SL2(C) =
{(

1 0
0 1

)
,

(
−1 0
0 −1

)}
. (3.140)

3.3.27 Exercise

The group M of all Möbius transformation is simple because SL2(C) has no normal subgroups other
than {(

1 0
0 1

)
,

(
−1 0
0 −1

)}
(3.141)

which is the kernel of a surjective omomorphism from SL2(C) to M.

3.3.28 Exercise

3.3.29 Exercise

(a) Since

u−1
γ,δ(z) =

γz + δ

−δz + γ

we have

uα,β ◦ u−1
γ,δ(z) =

(αγ − δβ)z + αδ + βγ

−(βγ + δα)z − β δ + γα

so uα,β ◦ u−1
γ,δ ∈ U .

(b) Since A ∈ SU2 ⇐⇒ A
t
= A−1 ∧ detA = 1, if A,B ∈ SU2 we have

(AB−1)
t
= B−1

t
A

t
= B

t−1
A

t
= BA−1 = (AB−1)−1

and

det(AB) = detAdetB = 1

so AB ∈ SU2. If

A =
(
a b
c d

)
then

A
t
=
(
a c

b d

)
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so A ∈ SU2 implies

|a|2 + |b|2 = 1

|c|2 + |d|2 = 1

ac+ bd = 0
ad− bc = 1

From the last two

a = −d
c
b, b(|d|2 + |c|2) = −c

and b = −c. Again from the last but one

b(d− a) = 0.

If b 6= 0 then a = d. If b = 0 then also c = 0, |a|2 = |d|2 = 1 and ad = 1, so a = d = 1 or
a = d = −1.

(c) This is false, since(
α β

−β α

)(
γ δ

−δ γ

)
=
(
αγ − βδ αδ + βγ

−γβ − αδ δβ + αγ

)
while

uα,β ◦ uγ,δ(z) =
(αγ − δβ)z − αδ − βγ

(βγ + δα)z − βδ + αγ
.

On the other hand the homomorphism φ : GL2(C) →M obviously takes SU2(C) onto U . From
I ∈ SU2(C) and −I ∈ SU2(C) follows that kerφ|SU2(C) = {I,−I}.

(c) This way T (l)
v is not well defined. Take v(z) = z and f(z) = z. Then v = u1,1 and v = u−1,−1. In

the first case

T (l)
v (f)(z) = (1)1f(v(z)) = z

in the second one

T (l)
v (f)(z) = (−1)1f(v(z)) = −z.

The proper way is to take l ∈ N. Since kerφ|SU2(C) = {I,−I}, if V = uα,β = uγ,δ then(
α −β
β α

)(
γ −δ
δ γ

)−1

= I

and α = γ, β = δ, or(
α −β
β α

)(
γ −δ
δ γ

)−1

= −I

and α = −γ, β = −δ. Since

(βz + α)2lf(v(z)) = (−(βz + α))2lf(v(z))

T
(l)
u is well defined.

Then, if v ∈ U , say v = uα,β , so, for f, g ∈ Hl and a, b ∈ C:

T (l)
v (af + bg)(z) = (βz + α)2l(af(v(z)) + bg(v(z))) =

= a(βz + α)2lf(v(z)) + b(βz + α)2lg(v(z)) =

= aT (l)
v (f)(z) + bT (l)

v (g)(z) =

= (aT (l)
v (f) + bT (l)

v (g))(z)
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so T (l)
v is a linear transformation. It is easy to check that for any v ∈ U T

(l)
v ◦ T (l)

v−1 = idHl
. Let

A(Hl) the group of automorphisms of Hl. The map

ψ : U → A(Hl)

u 7→ T (l)
u

is not a homomorphisms, at least if the composition in A(Hl) is defined in the usual way. In
fact, if v, w ∈ U and v = uα,β , w = uγ,δ

T (l)
uv (f)(z) = ((βγ + αδ)z − βδ + αγ)2lf(uv(z))

and

(T (l)
u ◦ T (l)

v )(f)(z) = T (l)
u (T (l)

v (f))(z) = (βz + α)2l(T (l)
v (f))(u(z)) =

= (βz + α)2l(δu(z) + γ)2lf(v(u(z))) =

= ((αδ + βγ)z − δβ + αγ)2lf(v(u(z))).

But if we define the composition in A(Hl) as T ◦ S(f) = S(T (f)), then

(T (l)
u ◦ T (l)

v )(f)(z) = T (l)
v (T (l)

u (f))(z) = (δz + γ)2l(T (l)
u (f))(v(z)) =

= (δz + γ)2l(βv(z) + α)2lf(u(v(z))) =

= ((βγ + αδ)z − βδ + αγ)2lf(uv(z)).

To show that ψ is injective, suppose ψ(v) is the identity of A(Hl),that is, for any f ∈ Hl:

T l
v(f) = f.

If f(z) = 1, and v = uα,β then

T l
v(f)(z) = (βz + α)2lf(v(z)) = (βz + α)2l = 1.

Since 2l is an even non-negative integer

βz + α = ±1

whence β = 0 and α = ±1. That is, v is the identity of U .

3.3.30 Exercise

We have

|f(z)| = eRe(− i
2 log( iz+i

−z+1 )) = e
1
2 Im(log( iz+i

−z+1 )) = e
1
2 arg( iz+i

−z+1 ).

The Möbius transformation

T (z) =
iz + i

−z + 1

takes D onto the upper half plane, as
T (1) = ∞
T (i) = −1
T (−1) = 0.

This yields

0 < arg
(
iz + i

−z + 1

)
< π

whence

1 < |f(z)| < e
π
2 .
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If S is a Möbius transformation that maps D onto D and such that f(S(z)) = f(z), then there is an
integer k such that for every z ∈ D

− i
2

log
(
iS(z) + i

−S(z) + 1

)
= − i

2
log
(
iz + i

−z + 1

)
+ 2kπi.

Since both the arguments of the logarithms belong to the upper half plane

i

2
log
(
S(z) + 1
−S(z) + 1

−z + 1
z + 1

)
= 2hπ

for some integer h, or

S(z) + 1
−S(z) + 1

−z + 1
z + 1

= e4hπ

which yields

S(z) =
(e4kπ + 1)z + e4kπ − 1
(e4kπ − 1)z + e4kπ + 1

.

All these Möbius transformations take D onto D.
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Complex Integration

4.1 Riemann-Stieltjes integrals

4.1.1 Exercise

If P = {t0, · · · , tn} is a partition of [a, b], we have, since γ is non decreasing

V (γ;P ) =
n∑

k=1

|γ(tk)− γ(tk−1)| =
n∑

k=1

γ(tk)− γ(tk−1) =

= γ(tn)− γ(t0) = γ(b)− γ(a).

4.1.2 Exercise

(a) Say #Q = #P + 1. Then if

P = {t0, . . . , tn} (4.1)

we will have, for some j such that 0 ≤ j ≤ n− 1

Q = {t0, . . . , tj , s, tj+1, . . . tn}; (4.2)

then

v(γ;Q) =
j∑

k=1

|γ(tk)− γ(tk−1)|+ |γ(s)− γ(tj)|+

+ |γ(tj+1)− γ(s)|+
n∑

k=j+2

|γ(tk)− γ(tk−1)|

and

v(γ;P) =
n∑

k=1

|γ(tk)− γ(tk−1)| ≤

≤
j∑

k=1

|γ(tk)− γ(tk−1)|+ |γ(tj+1)− γ(tj)|+

+
n∑

k=j+2

|γ(tk)− γ(tk−1)| ≤

≤
j∑

k=1

|γ(tk)− γ(tk−1)|+ |γ(s)− γ(tj)|+

+ |γ(tj+1)− γ(s)|+
n∑

k=j+2

|γ(tk)− γ(tk−1)| = v(γ;Q).

If #Q = #P + h, then Q = P ∪ {s1, . . . , sh}.
Let
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• Q1 = P ∪ {s1}
• Qi = Qi−1 ∪ {si} i = 2, . . . , h,

and for what already proved

v(γ;P) ≤ v(γ;Q1) ≤ v(γ;Q2) ≤ · · · ≤ v(γ;Qh) = v(γ;Q). (4.3)

(b) For a partition P = {t0, . . . , tn} we have

v(αγ + βσ;P) =
j∑

k=1

|(αγ + βσ)(tk)− (αγ + βσ)(tk−1)| =

=
j∑

k=1

|αγ(tk) + βσ(tk)− αγ(tk−1)− βσ(tk−1)| ≤

≤
j∑

k=1

|α(γ(tk)− γ(tk−1))|+ |β(σ(tk)− σ(tk−1))| =

=
j∑

k=1

|α| |γ(tk)− γ(tk−1)|+ |β| |σ(tk)− σ(tk−1))| =

= |α| v(γ;P) + |β| v(σ;P) ≤ |α|V (γ) + |β|V (σ)

whence V (αγ + βσ) ≤ |α|V (γ) + |β|V (σ).

4.1.3 Exercise

4.1.4 Exercise

4.1.5 Exercise

We have, for t ∈ (0, 1],

γ′(t) =
e−

1
t

t2

[
cos

1
t

+ sin
1
t

+ i

(
sin

1
t
− cos

1
t

)]
(4.4)

and

|γ′(t)| =
√

2
e−

1
t

t2
. (4.5)

Then for 0 < h < 1, the path

γh : [h, 1] → C
t 7→ γ(t)

is smooth, and

V (γh) =
∫ 1

h

√
2
e−

1
t

t2
dt =

√
2(e−1 − e−

1
h ). (4.6)

Hence by 9.1.2 γ is rectifiable, and

V (γ) = lim
h→0+

∫ 1

h

√
2
e−

1
t

t2
dt =

√
2(e−1 − e−

1
h ) =

√
2
e
. (4.7)

4.1.6 Exercise

4.1.7 Exercise

Since

lim
t→0

γ(t) = 0 = γ(0) (4.8)
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γ is a path.
Now, let

t′k =
2

(1 + 4k)π
k ∈ N

t′′k =
2

(3 + 4k)π
k ∈ N

(4.9)

and

PN =
[
0, t′′N , t

′
N , t

′′
N−1, t

′
N−1, . . . , t

′′
0 , t

′
0, 1
]
. (4.10)

Then

v(γ, PN ) = |γ(t′′N )− γ(0)|+
N∑

k=0

|γ(t′k)− γ(t′′k)|+

+
N∑

k=1

∣∣γ(t′′k−1)− γ(t′k)
∣∣+ |γ(1)− γ(t′0)| ≥

≥
N∑

k=0

∣∣∣∣γ ( 2
(1 + 4k)π

)
− γ

(
2

(3 + 4k)π

)∣∣∣∣ =
=

N∑
k=0

∣∣∣∣ 2
(1 + 4k)π

(1 + i)− 2
(3 + 4k)π

(1− i)
∣∣∣∣ =

=
N∑

k=0

∣∣∣∣ 4
(1 + 4k)(3 + 4k)π

+ i
8(1 + 2k)

(1 + 4k)(3 + 4k)π

∣∣∣∣ ≥
≥

N∑
k=0

8(1 + 2k)
(1 + 4k)(3 + 4k)π

and the last series diverges.

4.1.8 Exercise

4.1.9 Exercise

We have∫
γ

1
z
dz =

∫ 2π

0

in

eint
eintdt = 2πin.

4.1.10 Exercise

We have∫
γ

zn dz = i

∫ 2π

0

einteitdt = i

∫ 2π

0

ei(n+1)tdt.

If n 6= −1∫
γ

zn dz = i

[
ei(n+1)t

(n+ 1)t

]2π

0

= 0.

If n = −1∫
γ

zn dz = i [t]2π
0 = 2πi.
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4.1.11 Exercise

Let

γ1(t) = 2it+ 1− i

γ2(t) = −2t+ 1 + i

γ3(t) = −2it− 1 + i

γ4(t) = 2t− 1− i.

Then ∫
γ

1
z
dz =

4∑
j=1

∫
γj

1
z
dz.

If log is any branch of the logarithm defined on an open subset of C containing the path on which each
integral is to be calculated, we have∫

γ1

1
z
dz =

∫ 1

0

2i
2it+ 1− i

dt = [log(2it+ 1− i)]10 =
π

2
i∫

γ2

1
z
dz =

∫ 1

0

−2
−2t+ 1 + i

dt = [log(−2t+ 1 + i)]10 =
π

2
i∫

γ3

1
z
dz =

∫ 1

0

−2i
−2it− 1 + i

dt = [log(−2it− 1 + i)]10 =
π

2
i∫

γ4

1
z
dz =

∫ 1

0

2
2t− 1− i

dt = [log(2t− 1− i)]10 =
π

2
i

so ∫
γ

1
z
dz = 2πi.

4.1.12 Exercise

We have

I(r) =
∫ π

0

eireit

reit
ireitdt = i

∫ π

0

eir(cos t+i sin t)dt =

= i

∫ π

0

e−r sin teir cos tdt;

then

|I(r)| ≤
∫ π

0

∣∣e−r sin teir cos t
∣∣ dt =

∫ π

0

∣∣e−r sin t
∣∣ ∣∣eir cos t

∣∣ dt =

=
∫ π

0

e−r sin tdt = π(e− sin t̄)r

for some t̄ ∈ (0, π), whence e− sin t̄ < 1, and

lim
r→+∞

|I(r)| = 0. (4.11)

4.1.13 Exercise

What is z−
1
2 supposed to mean? There is no way to define a branch of the logarithm on an open subset

of C in which both paths are contained. Let

D1

{
z ∈ C | Im(z) ∈ (−π

2
,
3π
2

)
}

D2

{
z ∈ C | Im(z) ∈ (

π

2
,
5π
2

)
}
.
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(a) If log′ = exp−1
|D1

and z−
1
2 = exp

(
− 1

2 log′(z)
)

∫
γ

z−
1
2 dz = i

∫ π

0

e
1
2 itdt = 2

[
e

1
2 it
]π
0

= 2 [i− 1] .

(b) If log′′ = exp−1
|D2

and z−
1
2 = exp

(
− 1

2 log′′(z)
)

∫
γ

z−
1
2 dz = i

∫ π

0

e−
1
2 itdt = −2

[
e−

1
2 it
]π
0

= 2 [i+ 1] .

But let

D3

{
z ∈ C | Im(z) ∈ (

3π
2
,
7π
2

)
}

D4

{
z ∈ C | Im(z) ∈ (

5π
2
,
9π
2

)
}
.

(a) If log′ = exp−1
|D3

and z−
1
2 = exp

(
− 1

2 log′(z)
)

∫
γ

z−
1
2 dz = i

∫ π

0

e
1
2 it+πidt = −2

[
e

1
2 it
]π
0

= −2 [i− 1] .

(b) If log′′ = exp−1
|D4

and z−
1
2 = exp

(
− 1

2 log′′(z)
)

∫
γ

z−
1
2 dz = i

∫ π

0

e−
1
2 it+πidt = 2

[
e−

1
2 it
]π
0

= −2 [i+ 1] .

4.1.14 Exercise

4.1.15 Exercise

4.1.16 Exercise

4.1.17 Exercise

4.1.18 Exercise

4.1.19 Exercise

We have∫
γ

1
z2 − 1

dz =
1
2

[∫
γ

1
z − 1

dz −
∫

γ

1
z + 1

dz

]
.

The second integral yelds 0 because for t ∈ [0, 2π] the point γ(t) + 1 = eit + 2 lies in the domain of a
branch of the logarithm. Then∫

γ

1
z2 − 1

dz =
i

2

∫ 2π

0

eit

1 + eit − 1
dt = πi.

4.1.20 Exercise

We have∫
γ

1
z2 − 1

dz =
1
2

[∫
γ

1
z − 1

dz −
∫

γ

1
z + 1

dz

]
.

Now ∫
γ

1
z − 1

dz =
∫ π

−π

2ieit

2eit − 1
dt =

∫ 0

−π

2ieit

2eit − 1
dt+

∫ π

0

2ieit

2eit − 1
dt
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∫
γ

1
z + 1

dz =
∫ π

−π

2ieit

2eit + 1
dt =

∫ 0

−π

2ieit

2eit + 1
dt+

∫ π

0

2ieit

2eit + 1
dt.

Letting

D1

{
z ∈ C | Im(z) ∈ (−3π

2
,
π

2
)
}

D2

{
z ∈ C | Im(z) ∈ (−π

2
,
3π
2

)
}

and log′ = exp−1
|D1

, log′′ = exp−1
|D2

, we have

∫ 0

−π

2ieit

2eit − 1
dt =

[
log′(2eit − 1)

]0
−π

= − log′(−3) = − log 3 + πi

∫ π

0

2ieit

2eit − 1
dt =

[
log′′(2eit − 1)

]π
0

= log′′(−3) = log 3 + πi

∫ 0

−π

2ieit

2eit + 1
dt =

[
log′(2eit + 1)

]0
−π

= log′(3)− log′(−1) = log 3 + πi

∫ π

0

2ieit

2eit + 1
dt =

[
log′′(2eit + 1)

]π
0

= log′′(−1)− log′′(3) = πi− log 3.

Finally∫
γ

1
z2 − 1

dz =
1
2

[2πi+ 2πi] = 2πi.

4.1.21 Exercise

Simply (F1−F2)′ = 0 implies F1−F2 constant in G. We know that F ′ = 0 implies that F is constant
also when F is only differentiable.

4.1.22 Exercise

For n ≥ 2 let

fn(z) = (z − a)−n.

Then

fn =
f ′n−1

1− n

so each fn has a primitive in G.

4.1.23 Exercise

We have

(fg)′ = f ′g + fg′

whence∫
γ

(fg)′dz =
∫

γ

f ′gdz +
∫

γ

fg′dz

and

f(b)g(b)− f(a)g(a) =
∫

γ

f ′gdz +
∫

γ

fg′dz.
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4.2 Power series representation of analytic functions

4.2.1 Exercise

4.2.2 Exercise

4.2.3 Exercise

4.2.4 Exercise

4.2.5 Exercise

Actually Abel’s Limit Theorem has a more general statement: see Ahlfors ”Complex Analysis” 2.2.5
p. 42. To prove the given statement, let

Sn =
n∑

k=0

ak

and for |z| < 1

f(z) =
+∞∑
k=0

akz
k.

Then clearly

lim
n→+∞

Sn = A

and

n∑
k=0

akx
k = S0 +

n∑
k=1

(Sk − Sk−1)xk = S0 +
n∑

k=1

Skx
k −

n∑
k=1

Sk−1x
k =

=
n−1∑
k=0

Skx
k −

n−1∑
k=0

Skx
k+1 + Snx

n = (1− x)
n−1∑
k=0

Skx
k + Snx

n

whence, for |x| < 1

f(x) = (1− x)
+∞∑
k=0

Skx
k.
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Now for any ε > 0 there is m ∈ N such that n ≥ m implies |Sn −A| < ε. Then, for |x| < 1

|f(x)−A| =

∣∣∣∣∣(1− x)
+∞∑
k=0

Skx
k −A

∣∣∣∣∣ =
=

∣∣∣∣∣(1− x)
+∞∑
k=0

Skx
k −A(1− x)

+∞∑
k=0

xk

∣∣∣∣∣ =
=

∣∣∣∣∣(1− x)
+∞∑
k=0

(Sk −A)xk

∣∣∣∣∣ =
=

∣∣∣∣∣(1− x)

(
m−1∑
k=0

(Sk −A)xk +
+∞∑
k=m

(Sk −A)xk

)∣∣∣∣∣ ≤
≤ |1− x|

(∣∣∣∣∣
m−1∑
k=0

(Sk −A)xk

∣∣∣∣∣+
∣∣∣∣∣
+∞∑
k=m

(Sk −A)xk

∣∣∣∣∣
)

=

= |1− x|

(∣∣∣∣∣
m−1∑
k=0

(Sk −A)xk

∣∣∣∣∣+ |x|m
∣∣∣∣∣
+∞∑
k=m

(Sk −A)xk−m

∣∣∣∣∣
)

=

= |1− x|

(∣∣∣∣∣
m−1∑
k=0

(Sk −A)xk

∣∣∣∣∣+ |x|m
∣∣∣∣∣
+∞∑
k=0

(Sk −A)xk

∣∣∣∣∣
)
≤

≤ |1− x|

(∣∣∣∣∣
m−1∑
k=0

(Sk −A)xk

∣∣∣∣∣+ |x|m
∣∣∣∣ 1
1− x

∣∣∣∣ ε
)
≤

≤ |1− x|

∣∣∣∣∣
m−1∑
k=0

(Sk −A)xk

∣∣∣∣∣+ ε

whence for any ε > 0

lim
x→0−

|f(x)−A| ≤ ε

that is

lim
x→0−

|f(x)−A| = 0.

4.2.6 Exercise

4.2.7 Exercise

(a) Using integration by parts∫
γ

eiz

z2
dz =

1
2

∫
γ

ieiz

z−1
dz =

2πi
2
[
ieiz
]
z=0

= πi.

(b) ∫
γ

1
z − a

dz = 2πi [1]z=a = 2πi.

(c) Using integration by parts twice∫
γ

sin z
z3

dz =
1
2

∫
γ

cos z
z2

dz = −1
6

∫
γ

sin z
z

dz = −1
6
2πi [sin z]z=0 = 0.

(d) Supposing log is the principal branch of the logartithm, since the integrand function is analytic in
B
(
1; 1

2

)
∫

γ

log z
zn

dz = 0.
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4.2.8 Exercise

4.2.9 Exercise

(a) Using integration by parts n− 1 times

∫
γ

2 sinh z
zn

dz =
2
n!


∫

γ

sinh z
z

dz if n is odd∫
γ

cosh z
z

dz if n is even

that is

∫
γ

2 sinh z
zn

dz =
2
n!

2πi


[sinh z]z=0 = 0 if n is odd

[cosh z]z=0 =
4πi
n!

if n is even

(b) If n > 1 the integrand function has a primitive in C−
{

1
2

}
, so the integral yields 0. If n = 1∫

γ

1(
z − 1

2

) dz = 2πi [1]z= 1
2

= 2πi.

(c) ∫
γ

1
z2 + 1

dz =
1
2i

[∫
γ

1
z − i

dz −
∫

γ

1
z + i

dz

]
= π[1− 1] = 0.

(d) ∫
γ

sin z
z

dz = 2πi [sin z]z=0 = 0.

(e) Supposing

z
1
m = e

1
m log z

where log is the principal branch of the logarithm, then, using imtegration by parts n− 1 times∫
γ

z
1
m

(z − 1)m
dz =

(1−m)(1− 2m) · · · (1− (m− 2)m)
mm−1m!

∫
γ

z
1−(m−1)m

m

z − 1
dz =

=
(1−m)(1− 2m) · · · (1− (m− 2)m)

mm−1m!
2πi

[
z

1−(m−1)m
m

]
z=1

=

=
(1−m)(1− 2m) · · · (1− (m− 2)m)

mm−1m!
2πi.

4.2.10 Exercise

We have∫
γ

z2 + 1
z(z2 + 4)

dz =
1
4

∫
γ

1
z
dz +

3
8

∫
γ

1
z − 2i

dz +
3
8

∫
γ

1
z + 2i

dz

then

∫
γ

z2 + 1
z(z2 + 4)

dz =


π

2
i if r < 2

2πi if r > 2
.
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4.2.11 Exercise

If T is the Möbius transformation

T (z) =
iz + 1
−iz + 1

we have
T−1(0) = i

T−1(−1) = ∞
T−1(∞) = −i

so T maps the imaginary axis onto the real one, and the set {z ∈ C | Re(z) = 0 ∧ |Im(z)| > 1} onto
the set {z ∈ C | Im(z) = 0 ∧Re(z) < 0}. So the domain of analyticity of f is

D = C− {z ∈ C | Re(z) = 0 ∧ |Im(z)| > 1} .

Furhtermore

tan(z) =
1
i

eiz − e−iz

eiz + e−iz
=

1
i

e2iz − 1
e2iz + 1

so

tan(f(z)) =
1
i

iz+1
−iz+1 − 1
iz+1
−iz+1 + 1

=
1
i

1 + iz − 1 + iz

1 + iz + 1− iz
= z.

If |z| < i
log(1 + iz) =

+∞∑
k=1

(−1)k+1

k
ikzk

log(1− iz) =
+∞∑
k=1

(−1)k+1

k
(−i)kzk

.

Now Re(1 + iz) > 0 and Re(1− iz) > 0, whence −π < Im(log(1 + iz)− log(1− iz)) < π which means
that log(1 + iz)− log(1− iz) lies in the image of log, and

log(1 + iz)− log(1− iz) = log
(

1 + iz

1− iz

)
=

=
+∞∑
k=1

(−1)k+1

k
(1− (−1)k)ikzk =

=
+∞∑
k=0

2
2k + 1

i2k+1z2k+1 =

=
+∞∑
k=0

2
2k + 1

(−1)kiz2k+1.

Finally

f(z) =
+∞∑
k=0

(−1)k

2k + 1
z2k+1.

4.2.12 Exercise

Since sec(z) = cos(z)−1, sec is an even function and its power series expantion has only even powers.
Let

sec(z) =
+∞∑
k=0

E2k

(2k)!
z2k.
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Now cos(z) sec(z) = 1 yields E0 = 1 and for n ≥ 1

n∑
k=0

(−1)k

(2k)!
E2(n−k)

(2(n− k))!
= 0

whence

n∑
k=0

(−1)k (2n)!
(2k)!(2(n− k))!

E2(n−k) = 0

that is

n∑
k=0

(−1)k

(
2n

2(n− k)

)
E2(n−k) = 0.

Since the domain of sec is D = C −
{

π
2 + 2kπ, k ∈ Z

}
the radius of convergence of the series is

d(0, D) = π
2 .

4.2.13 Exercise

To be more accurate, define

g(z) =


ez − 1
z

if z 6= 0

1 if z = 0
.

Then

g(z) =
+∞∑
k=0

zk

(k + 1)!
.

Since g is defined everywhere, the radius of convergence of the last series is +∞. Alternatively

lim
k→+∞

k

√∣∣∣∣ 1
(k + 1)!

∣∣∣∣ = 0.

In the same way define

f(z) =


z

ez − 1
if z 6= 0

1 if z = 0
.

Then g(z)f(z) = 1 for each z ∈ C. Let

f(z) =
+∞∑
k=0

ak

k!
zk.

Since f is defined in D = C − {2kπi, k ∈ Z}, the last series has radius of convergence 2π. Since
g(z)f(z) = 1

n∑
k=0

ak

k!
1

(n− k + 1)!
= 0

or

n∑
k=0

ak
(n+ 1)!

k!(n− k + 1)!
=

n∑
k=0

ak

(
n+ 1
k

)
= 0.

Now

h(z) = f(z) +
1
2
z =

1
2
ez + 1
ez − 1

z



68
John B. Conway

Chapter 4: Complex Integration

and this is an even function, so

h(z) =
+∞∑
k=0

ak

k!
zk +

1
2
z = 1 +

(
a1 +

1
2

)
z +

+∞∑
k=2

ak

k!
zk

which yields a1 = −1
2

a2k+1 = 0, k > 0
.

4.2.14 Exercise

If

h(z) =
1
2
ez + 1
ez − 1

z

we have

cot(z) = i
e2iz + 1
e2iz − 1

=
1
z

(
1
2
e2iz + 1
e2iz − 1

2iz
)

=
1
z
h(2iz)

and

tan(z) = cot(z)− 2 cot(2z) =
1
z
h(2iz)− 1

z
h(4iz) =

=
1
z

(
+∞∑
k=0

a2k

(2k)!
(2iz)2k −

+∞∑
k=0

a2k

(2k)!
(4iz)2k

)
=

=
1
z

(
+∞∑
k=0

a2k

(2k)!
(
(2iz)2k − (4iz)2k

))
=

=
1
z

(
+∞∑
k=1

a2k

(2k)!
(2i)2k

(
1− 22k

)
z2k

)
=

=
1
z

(
+∞∑
k=1

a2k

(2k)!
(−1)k4k

(
1− 22k

)
z2k

)
=

=
+∞∑
k=0

a2(k+1)

(2(k + 1))!
(−1)k+14k+1

(
1− 22(k+1)

)
z2k+1 =

=
+∞∑
k=0

B2(k+1)

(2(k + 1))!
4k+1

(
1− 2 · 4k

)
z2k+1.

4.3 Zeroes of an Analythic function

4.3.1 Exercise

Let

f(z) =
+∞∑
k=0

akz
k.

Since

f(z)
zn

=
n−1∑
k=0

akz
k−n +

+∞∑
k=n

akz
k−n

then if |z| > R∣∣∣∣∣
+∞∑
k=n

akz
k

∣∣∣∣∣ <
∣∣∣∣f(z)
zn

∣∣∣∣+ n−1∑
k=0

|ak|
1

Rn−k
≤M +

n−1∑
k=0

|ak|
1

Rn−k
.
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This implies that

+∞∑
k=0

an+kz
k

is a constant, that is, an+k = 0 if k > 0, and

f(z) =
n∑

k=0

akz
k.

4.3.2 Exercise

Let

G1 = {z ∈ C | |z + 2| < 1}

G2 = {z ∈ C | |z − 2| < 1}

G = G1 ∪G2 and f : G→ C defined by

f(z) =

{
0 if z ∈ G1

1 if z ∈ G2

.

4.3.3 Exercise

Let f, g be entire functions such that f(x) = ex and g(x) = ex if x ∈ R. Then the set

{z ∈ C | f(z) = g(z)}

has a limit point in C so f = g.

4.3.4 Exercise

4.3.5 Exercise

4.3.6 Exercise

4.3.7 Exercise

4.3.8 Exercise

4.3.9 Exercise

4.3.10 Exercise

The function

fg

g

is analytic where g 6= 0 , and so is f , which is impossible.

4.4 The index of a closed curve

4.4.1 Exercise

4.4.2 Exercise

For each k ∈ N+ define the map

α1
k :
[

1
k + 1

,
1
k

]
→ [−π, π]

t 7→ π[2k(k + 1)t− 2k − 1]
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and the path with the same domain

γ1
k(t) =

1
4k

(
eiα1

k(t) + 1
)
.

Clearly

V (γ1
k) =

π

2k−1

γ1
k

(
1
k

)
= 0

γ1
k

(
1

k + 1

)
= 0

so the path γ1 : [0, 1] → C defined by

γ1(t) =


γ1

k(t) if t ∈
(

1
k + 1

,
1
k

]
k ∈ N

0 if t = 0

is continuous, and
+∞∑
k=0

V (γ1
k)

converges. By Proposition 9.1.3 γ1 is a rectifiable path.
In the same way for each k ∈ N+ define the map

α2
k :
[
−1
k
,− 1

k + 1

]
→ [0, 2π]

t 7→ −π[2k(k + 1)t+ 2k]

and the path with the same domain

γ2
k(t) =

1
4k

(
eiα2

k(t) − 1
)

so the path γ2 : [−1, 0] → C defined by

γ2(t) =


γ2

k(t) if t ∈
[
−1
k
,− 1

k + 1

)
k ∈ N

0 if t = 0

is continuous and rectifiable. Let γ : [−1, 1] → C defined by

γ(t) =

{
γ1(t) if t ∈ [0, 1]

γ2(t) if t ∈ [−1, 0].

Let

p1
h =

(
1
4h
, 0
)

h ∈ N

p2
h =

(
− 1

4h
, 0
)

h ∈ N.

Again by Proposition 9.1.3

n(γ; p1
h) =

1
2πi

∫
γ

1
p1

h − z
dz =

+∞∑
k=1

∫
γ1

k

1
p1

h − z
dz +

+∞∑
k=1

∫
γ2

k

1
p1

h − z
dz.

that is

n(γ; p1
h) =

+∞∑
k=1

n(γ1
k; p1

h) +
+∞∑
k=1

n(γ2
k; p1

h).

Since clearly p1
h belongs to the unboundeded component of C −

{
γ2

k

}
for all k, to the unbounded

component of C −
{
γ1

k

}
if k > h and to the only one bound component of C −

{
γ1

k

}
if k ≤ h, then

n(γ; p1
k) = k. Similarly n(γ; p2

k) = −k.
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4.4.3 Exercise

Let

p(z) = a
n∏

k=1

(z − zk)

where |zk| < R, k = 1 . . . n. Then

p′(z) = a

n∑
k=1

∏
h6=k

(z − zh)

so

p′(z)
p(z)

=
n∑

k=1

1
z − zk

and ∫
γ

p′(z)
p(z)

dz =
∫

γ

n∑
k=1

1
z − zk

dz = 2πin.

4.4.4 Exercise

Let

σ1 : [0, 1] → C
t 7→ (1 + (r − 1)t)eiθ

and

σ2 : [0, 1] → C
t 7→ eitθ

Then there is an integer k such that∫
γ

1
z
dz +

∫
−σ1

1
z
dz +

∫
−σ2

1
z
dz = 2kπi

whence∫
γ

1
z
dz =

∫ 1

0

r − 1
1 + (r − 1)t

dt+ i

∫ 1

0

θdt+ 2kπi =

= [log(1 + (r − 1)t)]10 + [iθ]10 + 2kπi = log r + iθ + 2kπi.

4.5 Cauchy’s Theorem and Integral Formula

4.5.1 Exercise

In every point (v, w) ∈ G×G such that v 6= w the function ϕ is clearly continuous.
Let r be such that B(w, r) ⊆ G. If u, v ∈ B(w, r/4) then u ∈ B(v, r/2) and B(v, r/2) ⊆ B(w, r). So f
is analytic in B(v, r/2) and

f(u)− f(v) = (u− v)
+∞∑
k=1

f (k)(v)
k!

(u− v)k−1 = (u− v)f
′
(v) + (u− v)2

+∞∑
k=2

f (k)(v)
k!

(u− v)k−2

whence if u 6= v and (u, v) 6= (w,w)∣∣∣∣f(u)− f(v)
u− v

− f
′
(w)
∣∣∣∣ =

∣∣∣∣∣f ′
(v) + (u− v)

+∞∑
k=2

f (k)(v)
k!

(u− v)k−2 − f
′
(w)

∣∣∣∣∣
≤
∣∣∣f ′

(v)− f
′
(w)
∣∣∣+ |u− v|

∣∣∣∣∣
+∞∑
k=2

f (k)(v)
k!

(u− v)k−2

∣∣∣∣∣ .
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Now if |f(z)| ≤ M in B(w, r) also |f(z)| ≤ M holds in B(v, r/2) for any v in B(w, r/4), then by
Cauchy’s Estimate∣∣∣f (k)(v)

∣∣∣ ≤ k!M2k

rk

for any v in B(w, r/4). It follows that∣∣∣∣∣
+∞∑
k=2

f (k)(v)
k!

(u− v)k−2

∣∣∣∣∣ ≤M
+∞∑
k=2

2k |u− v|k−2

rk
=

4M
r2

+∞∑
k=0

(
2 |u− v|

r

)k

and, since |u− v| < r/2∣∣∣∣∣
+∞∑
k=2

f (k)(v)
k!

(u− v)k−2

∣∣∣∣∣ ≤ 4M(r − 2 |u− v|)
r

.

Eventually∣∣∣∣f(u)− f(v)
u− v

− f
′
(w)
∣∣∣∣ ≤ ∣∣∣f ′

(v)− f
′
(w)
∣∣∣+ |u− v| 4M(r − 2 |u− v|)

r
.

So if ε > 0 there is δ1 such that for any (u, v) such that u 6= v, (u, v) 6= (w,w) and
√

(u− w)2 + (v − w)2 <
δ1 the inequality |ϕ(u, v)− ϕ(w,w)| < ε holds.
Since f

′
is a continuous function there is δ2 such that for any (u, u) such that (u, u) 6= (w,w) and√

(u− w)2 + (u− w)2 =
√

2 |u− w| < δ2 the inequality |ϕ(u, u)− ϕ(w,w)| =
∣∣∣f ′

(u)− f
′
(v)
∣∣∣ < ε

holds.
If δ = min {δ1, δ2} then (u, v) 6= (w,w) and

√
(u− w)2 + (v − w)2 < δ implies |ϕ(u, v)− ϕ(w,w)| < ε.

For z ∈ G let

ϕv(z) = ϕ(z, v).

Clearly ϕv is analytic for any u ∈ G such that u 6= v. Let r be such that B(v, r) ⊆ G. For z 6= v and
|z − v| < r

ϕv(z)− ϕv(z)
z − v

=
1

z − v

(
f(z)− f(v)

z − v
− f

′
(v)
)

=
1

z − v

(
+∞∑
k=1

f (k)(v)
k!

(z − v)k−1 − f
′
(v)

)
=

=
1

z − v

(
+∞∑
k=2

f (k)(v)
k!

(z − v)k−1

)
=

+∞∑
k=2

f (k)(v)
k!

(z − v)k−2

whence

lim
z→v

ϕv(z)− ϕv(z)
z − v

=
f
′′
(v)
2

.

If z 6= v

ϕ
′
(z) =

f
′
(z)(z − v)− (f(z)− f(v))

(z − v)2
=

=
f
′
(z)(z − v)− f

′
(v)(z − v)− f

′′
(v)
2 (z − v)2 −

∑+∞
k=3

f(k)(v)
k! (z − v)k

(z − v)2
=

=
f
′
(z)− f

′
(v)

z − v
− f

′′
(v)
2

−
+∞∑
k=3

f (k)(v)
k!

(z − v)k−2

so

lim
z→v

ϕ
′

v(z) =
f
′′
(v)
2

= ϕ
′
(v).

NB Remember we still don’t know that a derivable function is analytic.

4.5.2 Exercise

4.5.3 Exercise



Chapter 5

Singularities

5.1 Classification of singularities

5.2 Residues

5.2.1 Exercise

(a)

r1r2

(h,0)

The polynomial z4 + z2 + 1 has roots r1 = ei π
3 , r2 = ei 2π

3 , r3 = ei 4π
3 , r4 = ei 5π

3 . The residues of
the function

f(z) =
z2

z4 + z2 + 1
are

res(f, r1) =
√

3− i

4
√

3

res(f, r2) =
−
√

3− i

4
√

3
.

Let h > 1 and

γh : [0, π] → C
t 7→ heit

σh : [−h, h] → C
t 7→ t

.

Then ∫
γh+σh

f(z) dz = 2πi (res(f, r1) + res(f, r2)) =
π
√

3
3

.

For the integral on γh we have∣∣∣∣∫
γh

z2

z4 + z2 + 1
dz

∣∣∣∣ = ∣∣∣∣i∫ π

0

h3e3it

h4e4it + h2e2it + 1
dt

∣∣∣∣ ≤ ∫ π

0

h3

|h4e4it + h2e2it + 1|
dt.

Now ∣∣h4e4it + h2e2it + 1
∣∣ = ∣∣h2e2it(h2e2it + 1) + 1

∣∣ ≥ ∣∣h2
∣∣h2e2it + 1

∣∣− 1
∣∣

in turn, since h > 1∣∣h2e2it + 1
∣∣ ≥ h2 − 1

and if h >
√

2

h2
∣∣h2e2it + 1

∣∣ ≥ 1
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so ∣∣h2
∣∣h2e2it + 1

∣∣− 1
∣∣ = h2

∣∣h2e2it + 1
∣∣− 1 ≥ h2(h2 − 1)− 1.

Going back to the integral we have∣∣∣∣∫
γh

z2

z4 + z2 + 1
dz

∣∣∣∣ ≤ ∫ π

0

h3

h2(h2 − 1)− 1
dt =

h3π

h2(h2 − 1)− 1

that is

lim
h→+∞

∫
γh

z2

z4 + z2 + 1
dz = 0.

This yields

lim
h→+∞

∫
σh

z2

z4 + z2 + 1
dz =

π
√

3
3

.

But ∫
σh

z2

z4 + z2 + 1
dz =

∫ h

−h

t2

t4 + t2 + 1
dt = 2

∫ h

0

t2

t4 + t2 + 1
dt

which finally yields∫ +∞

0

t2

t4 + t2 + 1
dt =

π
√

3
6

.

(b) To calculate this integral we don’t need the residues. Provided we already know that∫ +∞

0

sinx
x

=
π

2
.

In fact, for 0 < a < b∫ b

a

cosx− 1
x2

dx =
[
−cosx− 1

x

]b

a

−
∫ b

a

sinx
x

dx

so ∫ π

0

cosx− 1
x2

dx =
[
−cosx− 1

x

]π

0

−
∫ π

0

sinx
x

dx =
2
π
−
∫ π

0

sinx
x

dx,

∫ +∞

π

cosx− 1
x2

dx =
[
−cosx− 1

x

]+∞
π

−
∫ +∞

π

sinx
x

dx = − 2
π
−
∫ +∞

π

sinx
x

dx,

and ∫ +∞

0

cosx− 1
x2

dx = −
∫ +∞

0

sinx
x

dx = −π
2
.

(c) If a = 0 then∫ π

0

cos 2θ
1− 2a cos θ + a2

dθ =
∫ π

0

cos 2θ dθ = 0

so suppose a 6= 0.
If z = eiθ then z−1 = e−iθ, so

cos θ =
1
2

(
z +

1
z

)
and

cos 2θ =
1
2

(
z2 +

1
z2

)
.
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Hence, if |z| = 1

cos 2θ
1− 2a cos θ + a2

= −1
2

z4 + 1
z(az2 − (1 + a2)z + a)

so if

γ : [0, 1] → C
t 7→ eit

we have∫ π

0

cos 2θ
1− 2a cos θ + a2

dθ = − 1
4i

∫
γ

z4 + 1
z2(az2 − (1 + a2)z + a)

dz.

The integrand function f has simple poles in a and 1/a and a double pole in 0. If a2 < 1 only 0
and a lie in the interior of γ, and

res(f, 0) =
1 + a2

a2

res(f, a) =
1 + a4

a2(a2 − 1)
.

Eventually∫ π

0

cos 2θ
1− 2a cos θ + a2

dθ = −π
2

(res(f, 0) + res(f, a)) =
πa2

1− a2
.

(d) If |z| = 1 we have

1
(a+ cos θ)2

=
4z2

(2az + z2 + 1)

so if

γ : [0, π] → C
t 7→ eit

we have∫ π

0

1
(a+ cos θ)2

=
1
2i

∫
γ

4z
(2az + z2 + 1)

.

The integrand function f has double poles in −a ±
√
a2 − 1, but only −a +

√
a2 − 1 lies in the

interior of γ, and

res(f,−a+
√
a2 − 1) =

a
√
a2 − 1

3

so ∫ π

0

1
(a+ cos θ)2

=
πa

√
a2 − 1

3 .

5.2.2 Exercise

(a) Let

γh : [0, π] → C
t 7→ heit

and

δh : [−h, h] → C
t 7→ t

.
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The function

f(z) =
1

(z2 + a2)2

has double poles in ±ia, and

res(f, ia) =
1

4ia3
.

Then if h > a

2
∫ h

0

1
(t2 + a2)2

dt+ i

∫ π

0

heit

(h2e2it + a2)2
dt =

∫
γh+δh

1
(z2 + a2)2

dz =
π

2a3
.

But ∣∣∣∣ heit

(h2e2it + a2)2

∣∣∣∣ = h

|h2e2it + a2|2
≤ h

||h2e2it| − a2|2
=

h

(h2 − a2)2

so

lim
h→+∞

∫ π

0

heit

(h2e2it + a2)2
dt = 0

and

lim
h→+∞

∫ h

0

1
(t2 + a2)2

dt =
π

4a3
.

(b) Let h > 1. Then∫ h

1/h

(log x)3

1 + x2
dx =

∫ 1

1/h

(log x)3

1 + x2
dx+

∫ h

1

(log x)3

1 + x2
dx =

=
∫ 1

h

(
log 1

x

)3
1 +

(
1
x

)2 (− 1
x2

)
dx+

∫ h

1

(log x)3

1 + x2
dx =

= −
∫ 1

h

(− log x)3

1 + x2
dx+

∫ h

1

(log x)3

1 + x2
dx =

= −
∫ h

1

(log x)3

1 + x2
dx+

∫ h

1

(log x)3

1 + x2
dx = 0.

This imply∫ +∞

0

(log x)3

1 + x2
dx = 0

since ∫ +∞

1

(log x)3

1 + x2
dx

converges, because there is K such that for x > K

(log x)3

x
< 1

whence for x > K

(log x)3

1 + x2
<

1
1 + x2

.
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(c)

r

(h,0)

We have∫ h

0

cos(at)
(1 + t2)2

dt =
∫ h

0

eiat + e−iat

2(1 + t2)2
dt =

∫ h

−h

eiat

2(1 + t2)2
dt.

For h > 0 let

γh : [−h, h] → C
t 7→ t

and

σh : [0, π] → C
t 7→ heit

.

If h > 1 the function

f(z) =
eiaz

(1 + z2)2

has a double pole in i inside the closed curve γh + δh, and

res(f, i) = − ie
−a(a+ 1)

4
.

Furthermore∫
σh

f(z) dz =
∫ π

0

eihaeit

2(1 + h2ei2t)2
iheit dt

and, if h > 1∣∣∣∣∣ eihaeit

2(1 + h2ei2t)2
iheit

∣∣∣∣∣ = e−ha sin t

2 |1 + h2ei2t|2
h ≤ h

2 |h2 − 1|2

so

lim
h→+∞

∫
σh

f(z) dz = 0

and ∫ +∞

0

cos(at)
(1 + t2)2

dt = 2πi res(f, i) =
πe−a(a+ 1)

2
.

(d) If z = eiθ

1
a+ sin2 θ

= − 4z2

z4 − 2(2a+ 1) + 1

so if

γ : [0, π] → C
t 7→ eit

we have∫ π
2

0

1
a+ sin2 θ

dθ =
1
4

∫ 2π

0

1
a+ sin2 θ

dθ = − 1
4i

∫
γ

4z
z4 − 2(2a+ 1) + 1

dz.

Since a > 0 the integrand function f has double poles in the real points ±
√

2a+ 1± 2
√
a(a+ 1);

now 2a+ 1− 2
√
a(a+ 1) ∈ (0, 1) while 2a+ 1 + 2

√
a(a+ 1) > 1, so∫

γ

4z
z4 − 2(2a+ 1) + 1

dz =

= 2πi
(

res
(
f,−

√
2a+ 1− 2

√
a(a+ 1)

)
+ res

(
f,

√
2a+ 1− 2

√
a(a+ 1)

))
=

= 2πi

(
− 1√

a(a+ 1)

)
=

(
− 2πi√

a(a+ 1)

)
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and ∫ π
2

0

1
a+ sin2 θ

dθ = − 1
4i

(
− 2πi√

a(a+ 1)

)
=

π

2
√
a(a+ 1)

.

(e)

i

h1/h

Let

S =
{
z ∈ C | − π

2
< Im z <

2π
3

}
and

log∗ = exp−1
|S

The function

f(z) =
log∗(z)

(1 + z2)2

has double poles in ±i, and

res(f, i) =
2i+ π

8
.

Let h > 1 and

αh : (0, π) → C

t 7→ 1
h
ei(π−t)

βh : (1/h, h) → C
t 7→ t

γh : (0, π) → C
t 7→ h eit

δh : (−h,−1/h) → C
t 7→ t

and Γ = α+ β + γ + δ. Then∫
Γ

f(z) dz =
−2π + π2i

4
.

For the integral on αh:∫
αh

f(z) dz = −i
∫ π

0

− log h+ i(π − t)(
1 + 1

h2 e2(π−t)i
)2 1
h
e2(π−t)i dt

and ∣∣∣∣∫
αh

f(z) dz
∣∣∣∣ ≤ ∫ π

0

log h+ π∣∣1 + 1
h2 e2(π−t)i

∣∣2 h dt ≤
∫ π

0

log h+ π∣∣1− 1
h2

∣∣2 h dt =
(log h+ π)π∣∣1− 1

h2

∣∣2 h
so

lim
h→+∞

∫
αh

f(z) dz = 0.

For the integral on βh:∫
βh

f(z) dz =
∫ h

1/h

log t
(1 + t2)2

dt.
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For the integral on γh:∫
γh

f(z) dz =
∫ π

0

log h+ it

(1 + h2e2it)2
heit dt

and ∣∣∣∣∫
γh

f(z) dz
∣∣∣∣ ≤ ∫ π

0

log h+ t

|1 + h2e2it|2
h dt ≤

∫ π

0

log h+ π

|h2 − 1|2
h dt ≤ (log h+ π)π

|h2 − 1|2
h

so

lim
h→+∞

∫
γh

f(z) dz = 0.

For the integral on δh:∫
δh

f(z) dz =
∫ −1/h

−h

log |t|+ iπ

(1 + t2)2
dt =

∫ h

1/h

log t
(1 + t2)2

dt+
∫ h

1/h

iπ

(1 + t2)2
dt =

=
∫ h

1/h

log t
(1 + t2)2

dt+
iπ

2

[
t2

1 + t2
+ arctan t

]h

1/h

=

=
∫ h

1/h

log t
(1 + t2)2

dt+
iπ

2

[
arctan (h)− arctan

(
1
h

)]
.

Eventually

lim
h→+∞

(
2
∫ h

1/h

log t
(1 + t2)2

dt+
iπ

2

[
arctan (h)− arctan

(
1
h

)])
=
−2π + π2i

4

and

lim
h→+∞

∫ h

1/h

log t
(1 + t2)2

dt = −π
4
.

5.3 The Argument Principle

5.3.1 Exercise

5.3.2 Exercise

If |z| = 1

|f(z)− zn + zn| = |f(z)| < 1 ≤ |f(z)− zn|+ 1 = |f(z)− zn|+ |zn|

so by Rouche’s Theorem V.3.8 f(z)−zn and zn have the same number of zeroes, counting multiplicities,
in B(0, 1), that is, f(z) = zn has n solutions, counting multiplicities, in B(0, 1).
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Part II

Notes





Chapter 6

The Complex Number System

6.2 The field of complex numbers

2.2 − Since

z = Re(z) + iIm(z) (6.1)

we have

z = Re(z)− iIm(z) (6.2)

hence

z + z = 2Re(z)
z − z = 2iIm(z).

2.3 − We have

z + w = Re(z) + iIm(z) + Re(w) + iIm(w)

= (Re(z) + Re(w)) + i(Im(z) + Im(w))
= (Re(z) + Re(w))− i(Im(z) + Im(w))
= (Re(z)− iIm(z)) + (Re(w)− iIm(w))
= z + w

and

zw = (Re(z) Re(w)− Im(z) Im(w)) + i(Re(z) Im(w) + Im(z) Re(w))
= (Re(z) Re(w)− Im(z) Im(w))− i(Re(z) Im(w) + Im(z) Re(w))
= (Re(z)− iIm(z))(Re(w)− iIm(w))
= z w.

2.4 − We have

|zw|2 = (zw)(zw)
= (zw)(z w)
= (zz)(ww)

= |z|2|w|2

= (|z||w|)2

hence

|zw| = |z||w|.
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2.5 − We have∣∣∣∣1z
∣∣∣∣ |z| = ∣∣∣∣1z z

∣∣∣∣ = |1| = 1 (6.3)

hence∣∣∣∣1z
∣∣∣∣ = 1

|z|
(6.4)

and ∣∣∣ z
w

∣∣∣ = |z|
∣∣∣∣ 1w
∣∣∣∣ = |z|

|w|
. (6.5)

2.6 − We have

|z|2 = z (z) = zz = |z|2 (6.6)

hence

|z| = |z| . (6.7)



Chapter 7

Metric Spaces and the Topology of
C

7.2 Connectedness

Proof of Proposition 2.8

Proof.

(a) If B is not connected, then it has more than one component. Since A is connected, there must be
a component CA such that A ⊆ CA. Call C another component of B and take x ∈ C. There are
two open subsets H1 and H2 of X such that CA ⊆ H1, C ⊆ H2 and H1 ∩H2 = ∅. Then there is
an open ball B(x, r) such that B(x, r) ⊆ H2 which yields B(x, r) ∩A = ∅, so that x /∈ A.

(b) If C is a component of X, C ⊆ C always holds. But for point (a) C also is connected, so C ⊆ C.
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Chapter 8

Elementary Properties and
Examples of Analytic Functions

8.3 Analitic functions as mappings. Möbius transformations

Proposition 8.3.1. The linear fractional transformation S defined by

S(z) =
az + b

cz + d
(8.1)

is invertible if and only if ad− bc 6= 0 and constant if and only if ad− bc = 0.

Proof. If ad− bc 6= 0 let T be the linear fractional transformation defined by

T (w) =
dw − b

−cw + a
. (8.2)

T (S(w)) =
a dw−b
−cw+a + b

c dw−b
−cw+a + d

=
adw−ab−cbw+ab

−cw+a
cdw−cb−cdw+ad

−cw+a

=
(ad− bc)w
ad− bc

= w (8.3)

and

S(T (z)) =
daz+b

cz+d − b

−caz+b
cz+d + a

=
adz+bd−bcz−bd

cz+d
−acz−bc+acz+ad

cz+d

=
(ad− bc)z
ad− bc

= z. (8.4)

If ad− bc = 0 then, if d 6= 0

S(z) =
bc
d z + b

cz + d
=
bcz + bd

cdz + d2
=
b(cz + d)
d(cz + d)

=
b

d
; (8.5)

if d = 0 then bc = 0 which implies, since it cannot be d = c = 0, that b = 0, and

S(z) =
az

cz
=
a

c
. (8.6)

Proposition 8.3.2. The Möbius transformation T defined by

T (z) =
az + b

cz + d
(8.7)

satisfies T 2 = I and T 6= I if and only if a = −d.

Proof. By computation

T 2(z) =
(a2 + bc)z + ab+ bd

(ca+ cd)z + cb+ d2
(8.8)

so T 2(z) = z if and only if

c(a+ d)z2 + (a+ d)(d− a)z − (a+ d)b = 0. (8.9)

This holds for every z ∈ C if and only if a = −d.
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Proposition 8.3.3. If T is a Möbius transformation and T 2 = I then T has two distinct fixed points.

Proof. By Proposition 8.3.2 if T 2 = I then

T (z) =
az + b

cz − a
. (8.10)

Then T (z) = z if and only if.

cz2 − 2az − b = 0 (8.11)

This equation has two different roots if and only if

a2 + bc 6= 0 (8.12)

which holds if T is a Möbius transformation.

Proposition 8.3.4. If z1, z2 are two distinct points in C, there is only one Möbius transformation T
such that T 2 = I and z1, z2 are the fixed points of T , and it is represented by

T (z) =
(z1 + z2)z − 2z1z2

2z − (z1 + z2)
(8.13)

Proof. Let

T (z) =
az + b

cz − a
. (8.14)

Then T (z) = z if and only if

cz2 − 2az − b = 0. (8.15)

If θ1 and θ2 are the two square roots of a2 + bc, the last equation has the two roots

z1 =
a+ θ1
c

(8.16)

z2 =
a+ θ2
c

. (8.17)

We can suppose a2 + bc = 1, otherwise we can divide every coefficient in the representation of T by
any τ such that τ2 = a2 + bc, and get another representation of T . Then

z1 =
a+ 1
c

(8.18)

z2 =
a− 1
c

. (8.19)

Hence

a =
z1 + z2
z1 − z2

(8.20)

c =
2

z1 − z2
. (8.21)

From a2 + bc = 1 follows

b =
2z1z2
z2 − z1

. (8.22)

It is a simple check to verify that if T is represented by (8.13) then z1 and z2 are its fixed points.

Proposition 8.3.5. Let T, S be Möbius transformations such that T 2 = S2 = I, with fixed points
respectively z1, z2 and w1, w2. If T (w1) = w2 then S(z1) = z2.
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Proof. We know that the Möbius transformation S that has fixed points w1 and w2 is represented by

S(z) =
(w1 + w2)z − 2w1w2

2z − (w1 + w2)
. (8.23)

If T has fixed points z1 and z2, and w2 = T (w1), then

w2 =
(z1 + z2)w1 − 2z1z2

2w1 − (z1 + z2)
. (8.24)

Therefore

S(z) =

(
w1 + (z1+z2)w1−2z1z2

2w1−(z1+z2)

)
z − 2w1

(z1+z2)w1−2z1z2
2w1−(z1+z2)

2z −
(
w1 + (z1+z2)w1−2z1z2

2w1−(z1+z2)

) = (8.25)

=
(2w2

1 − 2z1z2)z − 2w2
1(z1 + z2) + 4w1z1z2

(4w1 − 2(z1 + z2))z − (2w2
1 − 2z1z2)

(8.26)

(8.27)

and

S(z1) =
w2

1z1 − z2
1z2 − w2

1z1 − w2
1z2 + 2w1z1z2

2w1z1 − z2
1 − z1z2 − w2

1 + z1z2
= (8.28)

=
−z2

1z2 − w2
1z2 + 2w1z1z2

2w1z1 − z2
1 − w2

1

= (8.29)

=
(z1 − w1)2z2
(z1 − w1)2

= z2. (8.30)

Proposition 8.3.6. If T, S are Möbius transformations such that T 2 = S2 = I and T swaps S’s fixed
points, then ST = TS.

Proof. Let z1, z2 and w1, w2 be the fixed points of T and S. Then T (w1) = w2 and by Proposition
8.3.5 S(z1) = z2. Let R be the Möbius transformation defined by

R(0) = z1

R(∞) = z2

R(1) = w1.

(8.31)

Then
R−1SR(0) = ∞
R−1SR(∞) = 0

R−1SR(1) = 1

(8.32)

which implies that R−1SR(z) = 1
z . Furthermore

R−1TR(0) = 0

R−1TR(∞) = ∞
R−1TR(1) = R−1(w2)

(8.33)

butR−1SR(R−1(w2)) = R−1S(w2) = R−1(w2) whenceR−1(w2) = 1 orR−1(w2) = −1, butR−1(w1) =
1, soR−1(w1) = −1. ThenR−1TR(z) = −z, andR−1TR andR−1SR commute. But thenR−1TRR−1SR =
R−1SRR−1TR implies TS = ST .

Proposition 8.3.7. If T is a Möbius transformation such that T 2 = I with fixed points z1 and z2,
then for any z ∈ C the points z, T (z), z1, z2 lie on a circle.
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Proof. We have

(T (z), z1, z2, z) = (z, z1, z2, T (z)), (8.34)

that is

z − z2
z − T (z)

z1 − T (z)
z1 − z2

=
T (z)− z2
T (z)− z

z1 − z

z1 − z2
(8.35)

whence

z−z2
T (z)−z2

z−z1
T (z)−z1

= −1 (8.36)

that is

(z, T (z), z2, z1) = −1. (8.37)



Chapter 9

Complex Integration

9.1 Riemann-Stieltjes integrals

Proposition 9.1.1. Let γ : [a, b] → C be a rectifiable path, a < h < b. Define

γ1 = γ|[a,h]

γ2 = γ|[h,b].

Then V (γ) = V (γ1) + V (γ2).

Proof. Let

P1 = {t0, t1, . . . , tn}
P2 = {s0, s1, . . . , sm}

be partitions of [a, h] and [h, b]. Then P = P1 ∪ P2 is a partition of [a, b] and

V (γ1,P1) + V (γ2,P2) = V (γ,P) ≤ V (γ).

whence

V (γ1) + V (γ2) ≤ V (γ).

If

P = {t0, t1, . . . , tn}

is a partition of [a, b], let k be such that h ∈ [tk, tk+1]. Then

P ′ = {t0, t1, . . . , tk, h, tk+1, . . . , tn}

is a refinement of P and

P1 = {t0, t1, . . . , tk, h}
P2 = {h, tk+1, . . . , tn, }

are partitions of [a, h] and [h, b]. Then

V (γ,P) = V (γ1,P1) + V (γ2,P2) ≤ V (γ1) + V (γ2)

whence

V (γ) ≤ V (γ1) + V (γ2).

Proposition 9.1.2. Let γ : [a, b] → C be a contionuous path, and suppose that for every h such that
a < h < b the path γh = γ|[h,b] is rectifiable, and

I = lim
h→a+

V (γh) ∈ R. (9.1)

Then γ is rectifiable, and V (γ) = I.
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Proof. Let ε > 0, and let P be any partition of [a, b]. Take δ such that for x1, x2 ∈ [a, b], |x1 − x2| < δ
yields |γ(x1)− γ(x2)| < ε (of course γ is uniformly continuous). Now, take a refinement of P

P ′ = {t0, t1, . . . , tn} (9.2)

such that |P ′| < δ. Then

v(γ,P) ≤ v(γ,P ′) = |γ(t1)− γ(t0)|+
n∑

k=2

|γ(tk)− γ(tk−1)| <

< ε+
n∑

k=2

|γ(tk)− γ(tk−1)| ≤

< ε+ V
(
γ|[t1,b]

)
≤ ε+ I.

Hence for every ε > 0 V (γ) ≤ ε+ I, which yields V (γ) ≤ I.
On the other hand, if a < h < b and P is any partition of [h, b], we have

v(γh,P) ≤ V (γ) (9.3)

which yields

V (γh) ≤ V (γ) (9.4)

and eventually

I ≤ V (γ). (9.5)

Corollary 9.1.1. Let γ : [a, b] → C be a rectifiable path and a < t < b. Define γt = γ|[a,t]. Then

lim
t→b−

V (γt) = V (γ).

Proof. The function

f : [a, b) → R+

t 7→ V (γt)

is increasing, and f(t) ≤ V (γ), so its limit in b− exists in R. By Proposition 9.1.2 this limit is V (γ).

Corollary 9.1.2. Let γ : [a, b] → C be a rectifiable path and a < t < b. Define σt = γ|[t,b]. Then

lim
t→b−

V (σt) = 0.

Proof. Let γt = γ|[a,t]. Then V (γt) + V (σt) = V (γ) so by Corollary 9.1.1

lim
t→b−

V (σt) = V (γ)− lim
t→b−

V (σt) = 0.

Proposition 9.1.3. Let tk be a sequence of real numbers such that tk ∈ [a, b], t0 = a, tk+1 > tk and
lim tk = b, and for each k let γk : [tk, tk+1] → C be a smooth path, with γk(tk+1) = γk+1(tk+1), and
suppose that the series

+∞∑
k=0

V (γk)

converges. Then γk(tk) converges, the path γ : [a, b] → C defined by

γ(t) =

{
γk(t) if t ∈ [tk, tk+1) k ∈ N
lim γk(tk) if t = b
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is rectifiable, and

V (γ) =
+∞∑
k=0

V (γk).

Furthermore if f is a continuous function defined on an open subset of C contaning {γ}∫
γ

f(z) dz =
+∞∑
k=0

∫
γk

f(z) dz

Proof. If ε > 0 there is n̄ ∈ N such that n2 > n1 ≥ n̄ implies

n2∑
k=n1

V (γk) < ε.

So if n2 > n1 ≥ n̄

|γn2(tn2)− γn1(tn1)| =

∣∣∣∣∣
n2−1∑
k=n1

γk+1(tk+1)− γk(tk)

∣∣∣∣∣ =
=

∣∣∣∣∣
n2−1∑
k=n1

γk(tk+1)− γk(tk)

∣∣∣∣∣ ≤
≤

n2−1∑
k=n1

|γk(tk+1)− γk(tk)| ≤

≤
n2−1∑
k=n1

V (γk) < ε

which means that γk(tk) is a Cauchy sequence, and thus it converges. Let

l = lim γk(tk).

Now if ε > 0, let k̄ such that k ≥ k̄ implies |l − γk(tk)| < ε
2 and V (γk) < ε

2 . If δ = b− tk̄ then b− t < δ
implies t ∈ [tk0 , tk0+1] for some k0 ≥ k̄, thus if b− t < δ then

|γ(b)− γ(t)| = |l − γk0(tk0) + γk0(tk0)− γ(t)| < ε

2
+ V (γk0) < ε.

This proves that γ is continuous in b.
Now, if t ∈ [a, b) the path γt = γ|[a,t] is piecewise smooth, so if n̄ is such that t ≤ tn̄ then

V (γt) ≤
n̄∑

k=0

V (γk) ≤
∞∑

k=0

V (γk)

so

V (γ) ≤
∞∑

k=0

V (γk).

If ε > 0 there is n̄ such that
n̄∑

k=0

V (γk) >
∞∑

k=0

V (γk)− ε

thus

V (γ) ≥ V (γ|[a,tn̄+1]) =
n̄∑

k=0

V (γk) >
∞∑

k=0

V (γk)− ε.

Since this holds for any ε > 0, it yields

V (γ) ≥
∞∑

k=0

V (γk).
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If f is a continuous function defined on an open subset of C contaning {γ}, let γ̄k = γ|[a,tk]. Then

∫
γ

f(z) dz = lim
k→+∞

∫
γ̄k

f(z) dz = lim
k→+∞

k−1∑
h=0

∫
γh

f(z) dz =
+∞∑
h=0

∫
γh

f(z) dz.



Appendix A

Miscellaneous

A.1 Identity 1

The following identity holds (in any ring):

n∑
k=0

k∑
h=0

ahbk−h =
n∑

k=0

n−k∑
h=0

akbh. (A.1)

Proof. By induction on n. If n = 0 then the left side is

0∑
k=0

k∑
h=0

ahbk−h =
0∑

h=0

ahb0−h = a0b0 (A.2)

and the right one

0∑
k=0

0−k∑
h=0

akbh =
0∑

h=0

a0bh = a0b0. (A.3)

Now, supposing the identity holds for n:

n+1∑
k=0

k∑
h=0

ahbk−h =
n∑

k=0

k∑
h=0

ahbk−h +
n+1∑
h=0

ahbn+1−h =

=
n∑

k=0

n−k∑
h=0

akbh +
n+1∑
h=0

ahbn+1−h =

=
n∑

k=0

n−k∑
h=0

akbh +
n∑

h=0

ahbn+1−h + an+1b0 =

=
n∑

k=0

n−k∑
h=0

akbh +
n∑

k=0

akbn+1−k + an+1b0 =

=
n∑

k=0

n+1−k∑
h=0

akbh +
0∑

h=0

an+1bh =

=
n∑

k=0

n+1−k∑
h=0

akbh +
n+1−(n+1)∑

h=0

an+1bh

=
n+1∑
k=0

n+1−k∑
h=0

akbh.
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A.2 The real and immaginary part and module of sin and cos

sin(x+ iy) =
ei(x+iy) − e−i(x+iy)

2i
=
eix−y − e−ix+y

2i
=

=
e−y(cosx+ i sinx)− ey(cosx− i sinx)

2i
=

=
− cosx(ey − e−y) + i sinx(ey + e−y)

2i
=

= sinx cosh y + i cosx sinh y.

|sin(x+ iy)|2 = (sinx)2(cosh y)2 + (cosx)2(sinh y)2 =

= (sinx)2 + (sinx)2(sinh y)2 + (cosx)2(sinh y)2 =

= (sinx)2 + (sinh y)2.

cos(x+ iy) =
ei(x+iy) + e−i(x+iy)

2
=
eix−y + e−ix+y

2
=

=
e−y(cosx+ i sinx) + ey(cosx− i sinx)

2
=

=
cosx(ey + e−y)− i sinx(ey − e−y)

2
=

= cosx cosh y − i sinx sinh y.

|cos(x+ iy)|2 = (cosx)2(cosh y)2 + (sinx)2(sinh y)2 =

= (cosx)2 + (cosx)2(sinh y)2 + (sinx)2(sinh y)2 =

= (cosx)2 + (sinh y)2.

A.3 The group SL2(C)

Proposition A.3.1. The group SL2(C) has no normal non trivial subgroup other than

K =
{(

1 0
0 1

)
,

(
−1 0
0 −1

)}
. (A.4)

Proof. Clearly K is a normal subgroup of SL2(C). Let N be a normal subgroup of SL2(C) and N 6= K,
N 6= {I}. We will prove that N = SL2(C) by showing that for any conjugated class C of SL2(C) there
is L ∈ N ∩C. Since all the elements of SL2(C) belonging to the same conjugated class must also be in
N , this proves that N = SL2(C).

In SL2(C) there is, for any λ1, λ2 such that λ1 6= λ2, one conjugated class containing

Dλ1,λ2 =
(
λ1 0
0 λ2

)
,

one conjugated class containing only

I =
(

1 0
0 1

)
,

one conjugated class containing only

−I =
(
−1 0
0 −1

)
,

one conjugated class containing

H =
(

1 1
0 1

)
,
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one conjugated class containing

K =
(
−1 1
0 −1

)
.

Let A ∈ N such that A 6= I. Let δ1, δ2 ∈ C and h = δ1 + δ2. Now we show that there is Y ∈ N such
that the eigenvalues of Y are δ1, δ2.

If the with eigenvalues of A are λ1 and λ2 such that λ1 6= λ2, then all the elements of SL2(C) with
the same eigenvalues must be in N , in particular

B =
(
λ1 0
0 λ2

)
∈ N . (A.5)

Let

X =
(
x y
z t

)
. (A.6)

The linear system{
λ1x+ λ2t = h

x+ t = λ1 + λ2

(A.7)

has one solution, for any h, λ1, λ2, since λ1 6= λ2, and that means Tr(XB) = h, Tr(X) = λ1 + λ2.
Choosing z, y such that xt− zy = 1 we have X ∈ N , so XB ∈ N and Tr(XB) = h, which implies that
the eigenvalues of XB are δ1, δ2. If h 6= 2 and h 6= −2 then δ1 6= δ2. If h = 2 then δ1 = δ2 = 1 and
XB 6= I, since B−1 has the same eigenvalues as B, so XB is similar to H. If h = −2 then δ1 = δ2 = −1
and XB 6= −I, since −B−1 has the same eigenvalues as −B, so XB is similar to K. Finally, if C is
similar to H and D is similar to K then CD is similar to HK = −I.

If the eigenvalues of A are not distinct, A must not be similar either to I or −I, so it is similar to
H or to K.

Suppose A similar to H. Let

X =
(
x y
z t

)
. (A.8)

The linear system{
x+ z + t = h

x+ t = 2
(A.9)

has ∞1 solutions, for any h, for all of which z = h− 2. If h 6= 2 we can choose y such that xt− zy = 1,
and XH is similar either to Dδ1,δ2 if h 6= −2, or to K if h = −2. If h = 2 there’s no need to show
anything since any Z ∈ SL2(C) such that Tr(Z) = 2 is already similar to A.

The same holds if A is similar to K.
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