

Functions of One Complex Variable

Notes and Exercises

Alessandro Pizzotti

Contents

I Exercises	7
1 The Complex Number System	9
1.2 The field of complex numbers	9
1.2.1 Exercise	9
1.2.2 Exercise	11
1.2.3 Exercise	12
1.2.4 Exercise	12
1.2.5 Exercise	12
1.2.6 Exercise	12
1.3 The Complex Plane	13
1.3.1 Exercise	13
1.3.2 Exercise	13
1.3.3 Exercise	14
1.4 Polar representation and roots of complex numbers	14
1.4.1 Exercise	14
1.4.2 Exercise	14
1.4.3 Exercise	15
1.4.4 Exercise	16
1.4.5 Exercise	16
1.4.6 Exercise	17
1.4.7 Exercise	17
1.5 Lines and half planes in the complex plane	17
1.5.1 Exercise	17
1.6 The extended plane and its spherical representation	17
1.6.1 Exercise	17
1.6.2 Exercise	18
1.6.3 Exercise	18
1.6.4 Exercise	18
1.6.5 Exercise	18
2 Metric Spaces and the Topology of \mathbb{C}	21
2.1 Definition and examples of metric spaces	21
2.1.1 Exercise	21
2.1.2 Exercise	22
2.1.3 Exercise	23
2.1.4 Exercise	23
2.1.5 Exercise	24
2.1.6 Exercise	24
2.1.7 Exercise	24
2.1.8 Exercise	24
2.1.9 Exercise	24
2.1.10 Exercise	24
2.1.11 Exercise	25
2.2 Connectedness	25
2.2.1 Exercise	25
2.2.2 Exercise	25
2.2.3 Exercise	25
2.2.4 Exercise	26
2.2.5 Exercise	26

2.3	Sequences and completeness	26
2.3.1	Exercise	26
2.3.2	Exercise	26
2.3.3	Exercise	27
2.3.4	Exercise	27
2.3.5	Exercise	27
2.3.6	Exercise	27
2.3.7	Exercise	28
2.3.8	Exercise	28
2.4	Compactness	29
2.4.1	Exercise	29
2.4.2	Exercise	29
2.4.3	Exercise	29
2.4.4	Exercise	30
2.4.5	Exercise	30
2.4.6	Exercise	31
2.5	Continuity	31
2.5.1	Exercise	31
2.5.2	Exercise	32
2.5.3	Exercise	32
2.5.4	Exercise	32
2.5.5	Exercise	32
2.5.6	Exercise	33
2.5.7	Exercise	33
2.5.8	Exercise	33
2.5.9	Exercise	33
2.5.10	Exercise	34
2.6	Uniform convergence	34
2.6.1	Exercise	34
3	Elementary Properties and Examples of Analytic Functions	35
3.1	Power series	35
3.1.1	Exercise	35
3.1.2	Exercise	36
3.1.3	Exercise	36
3.1.4	Exercise	36
3.1.5	Exercise	36
3.1.6	Exercise	36
3.1.7	Exercise	37
3.2	Analytic functions	37
3.2.1	Exercise	37
3.2.2	Exercise	38
3.2.3	Exercise	38
3.2.4	Exercise	39
3.2.5	Exercise	39
3.2.6	Exercise	39
3.2.7	Exercise	40
3.2.8	Exercise	40
3.2.9	Exercise	40
3.2.10	Exercise	40
3.2.11	Exercise	41
3.2.12	Exercise	41
3.2.13	Exercise	41
3.2.14	Exercise	41
3.2.15	Exercise	42
3.2.16	Exercise	42
3.2.17	Exercise	43
3.2.18	Exercise	43
3.3	Analitic functions as mappings. Möbius transformations	44
3.3.1	Exercise	44

3.3.2	Exercise	44
3.3.3	Exercise	44
3.3.4	Exercise	44
3.3.5	Exercise	44
3.3.6	Exercise	44
3.3.7	Exercise	44
3.3.8	Exercise	45
3.3.9	Exercise	45
3.3.10	Exercise	46
3.3.11	Exercise	46
3.3.12	Exercise	46
3.3.13	Exercise	46
3.3.14	Exercise	46
3.3.15	Exercise	48
3.3.16	Exercise	49
3.3.17	Exercise	49
3.3.18	Exercise	49
3.3.19	Exercise	49
3.3.20	Exercise	49
3.3.21	Exercise	50
3.3.22	Exercise	50
3.3.23	Exercise	51
3.3.24	Exercise	51
3.3.25	Exercise	52
3.3.26	Exercise	52
3.3.27	Exercise	53
3.3.28	Exercise	53
3.3.29	Exercise	53
3.3.30	Exercise	55
4	Complex Integration	57
4.1	Riemann-Stieltjes integrals	57
4.1.1	Exercise	57
4.1.2	Exercise	57
4.1.3	Exercise	58
4.1.4	Exercise	58
4.1.5	Exercise	58
4.1.6	Exercise	58
4.1.7	Exercise	58
4.1.8	Exercise	59
4.1.9	Exercise	59
4.1.10	Exercise	59
4.1.11	Exercise	60
4.1.12	Exercise	60
4.1.13	Exercise	60
4.1.14	Exercise	61
4.1.15	Exercise	61
4.1.16	Exercise	61
4.1.17	Exercise	61
4.1.18	Exercise	61
4.1.19	Exercise	61
4.1.20	Exercise	61
4.1.21	Exercise	62
4.1.22	Exercise	62
4.1.23	Exercise	62
4.2	Power series representation of analytic functions	63
4.2.1	Exercise	63
4.2.2	Exercise	63
4.2.3	Exercise	63
4.2.4	Exercise	63

4.2.5	Exercise	63
4.2.6	Exercise	64
4.2.7	Exercise	64
4.2.8	Exercise	65
4.2.9	Exercise	65
4.2.10	Exercise	65
4.2.11	Exercise	66
4.2.12	Exercise	66
4.2.13	Exercise	67
4.2.14	Exercise	68
4.3	Zeroes of an Analythic function	68
4.3.1	Exercise	68
4.3.2	Exercise	69
4.3.3	Exercise	69
4.3.4	Exercise	69
4.3.5	Exercise	69
4.3.6	Exercise	69
4.3.7	Exercise	69
4.3.8	Exercise	69
4.3.9	Exercise	69
4.3.10	Exercise	69
4.4	The index of a closed curve	69
4.4.1	Exercise	69
4.4.2	Exercise	69
4.4.3	Exercise	71
4.4.4	Exercise	71
4.5	Cauchy's Theorem and Integral Formula	71
4.5.1	Exercise	71
4.5.2	Exercise	72
4.5.3	Exercise	72
5	Singularities	73
5.1	Classification of singularities	73
5.2	Residues	73
5.2.1	Exercise	73
5.2.2	Exercise	75
5.3	The Argument Principle	79
5.3.1	Exercise	79
5.3.2	Exercise	79
II	Notes	81
6	The Complex Number System	83
6.2	The field of complex numbers	83
7	Metric Spaces and the Topology of \mathbb{C}	85
7.2	Connectedness	85
8	Elementary Properties and Examples of Analytic Functions	87
8.3	Analitic functions as mappings. Möbius transformations	87
9	Complex Integration	91
9.1	Riemann-Stieltjes integrals	91
A	Miscellaneous	95
A.1	Identity 1	95
A.2	The real and immaginary part and module of sin and cos	96
A.3	The group $SL_2(\mathbb{C})$	96

Part I

Exercises

Chapter 1

The Complex Number System

1.2 The field of complex numbers

1.2.1 Exercise

1. From $z\bar{z} = |z|^2$ follows $\frac{1}{z} = \frac{\bar{z}}{|z|^2} = \frac{\Re(z)}{\Re(z)^2 + \Im(z)^2} - i \frac{\Im(z)}{\Re(z)^2 + \Im(z)^2}$ and $\Re\left(\frac{1}{z}\right) = \frac{\Re(z)}{\Re(z)^2 + \Im(z)^2}$, $\Im\left(\frac{1}{z}\right) = -\frac{\Im(z)}{\Re(z)^2 + \Im(z)^2}$

2. We have

$$\frac{z-a}{z+a} = \frac{(z-a)\overline{(z+a)}}{(z+a)\overline{(z+a)}} = \frac{z\bar{z} + (z-\bar{z})a - a^2}{z\bar{z} + (z+\bar{z})a + a^2} = \frac{|z|^2 + 2i\Im(z)a - a^2}{|z|^2 + 2\Re(z)a + a^2} \quad (1.1)$$

and

$$\begin{aligned} \Re\left(\frac{z-a}{z+a}\right) &= \frac{|z|^2 - a^2}{|z|^2 + 2\Re(z)a + a^2} \\ \Im\left(\frac{z-a}{z+a}\right) &= \frac{2\Im(z)a}{|z|^2 + 2\Re(z)a + a^2}. \end{aligned}$$

3. We have

$$\begin{aligned} z^3 &= (\Re(z) + i\Im(z))^3 \\ &= \Re(z)^3 + 3\Re(z)^2i\Im(z) + 3\Re(z)(i\Im(z))^2 + (i\Im(z))^3 \\ &= \Re(z)^3 - 3\Re(z)\Im(z)^2 + i(3\Re(z)^2\Im(z) - \Im(z)^3) \\ &= \Re(z)(\Re(z)^2 - 3\Im(z)^2) + i\Im(z)(3\Re(z)^2 - \Im(z)^2) \end{aligned}$$

and

$$\begin{aligned} \Re(z^3) &= \Re(z)(\Re(z)^2 - 3\Im(z)^2) \\ \Im(z^3) &= \Im(z)(3\Re(z)^2 - \Im(z)^2) \end{aligned}$$

4. We have

$$\frac{3+5i}{7i+1} = \frac{(3+5i)(1-7i)}{(1+7i)(1-7i)} = \frac{38-16i}{50} \quad (1.2)$$

and

$$\begin{aligned} \Re\left(\frac{3+5i}{7i+1}\right) &= \frac{38}{50} \\ \Im\left(\frac{3+5i}{7i+1}\right) &= -\frac{16}{50}. \end{aligned}$$

5. For point 3 we have

$$\begin{aligned} \Re\left(\left(\frac{-1+i\sqrt{3}}{2}\right)^3\right) &= -\frac{1}{2}\left(\frac{1}{4} - 3\frac{3}{4}\right) = 1 \\ \Im\left(\left(\frac{-1+i\sqrt{3}}{2}\right)^3\right) &= \frac{\sqrt{3}}{2}\left(3\frac{1}{4} - \frac{3}{4}\right) = 0 \end{aligned}$$

6. It is evident for point 5 that

$$\left(\frac{-1-i\sqrt{3}}{2}\right)^3 = \bar{1} = 1 \quad (1.3)$$

and so again

$$\begin{aligned} \Re\left(\left(\frac{-1-i\sqrt{3}}{2}\right)^6\right) &= 1 \\ \Im\left(\left(\frac{-1-i\sqrt{3}}{2}\right)^6\right) &= 0 \end{aligned}$$

7. If $n = 4k + r$, with $0 \leq r < 4$, we have $i^n = i^{4k+r} = (i^4)^k i^r = 1^k i^r = i^r$, then

$$\begin{aligned} \Re(i^n) &= \begin{cases} 0 & \text{if } r = 1 \text{ or } r = 3, \\ -1 & \text{if } r = 2, \\ 1 & \text{if } r = 0. \end{cases} \\ \Im(i^n) &= \begin{cases} 0 & \text{if } r = 0 \text{ or } r = 2, \\ -1 & \text{if } r = 3, \\ 1 & \text{if } r = 1. \end{cases} \end{aligned}$$

8. We have

$$\begin{aligned}
 \left(\frac{1+i}{\sqrt{2}}\right)^2 &= i, \\
 \left(\frac{1+i}{\sqrt{2}}\right)^3 &= \left(\frac{1+i}{\sqrt{2}}\right)i = \left(\frac{-1+i}{\sqrt{2}}\right), \\
 \left(\frac{1+i}{\sqrt{2}}\right)^4 &= i^2 = -1, \\
 \left(\frac{1+i}{\sqrt{2}}\right)^5 &= \left(\frac{1+i}{\sqrt{2}}\right)(-1) = \left(\frac{-1-i}{\sqrt{2}}\right), \\
 \left(\frac{1+i}{\sqrt{2}}\right)^6 &= i^3 = -i, \\
 \left(\frac{1+i}{\sqrt{2}}\right)^7 &= \left(\frac{1+i}{\sqrt{2}}\right)(-i) = \left(\frac{1-i}{\sqrt{2}}\right), \\
 \left(\frac{1+i}{\sqrt{2}}\right)^8 &= (-1)^2 = 1
 \end{aligned}$$

1.2.2 Exercise

1. We have

$$|-2+i| = \sqrt{2^2 + 1} = \sqrt{5}, \quad (1.4)$$

$$\overline{-2+i} = -2-i. \quad (1.5)$$

2. We have

$$|-3| = 3, \quad (1.6)$$

$$\overline{-3} = -3. \quad (1.7)$$

3. We have

$$|(2+i)(4+3i)| = |2+i||4+3i| = \sqrt{5} \cdot \sqrt{25} = 5\sqrt{5}, \quad (1.8)$$

$$\overline{(2+i)(4+3i)} = \overline{(2+i)} \overline{(4+3i)} = (2-i)(4-3i) = 5-10i. \quad (1.9)$$

4. We have

$$\left| \frac{3-i}{\sqrt{2}+3i} \right| = \frac{|3-i|}{|\sqrt{2}+3i|} = \frac{\sqrt{10}}{\sqrt{11}} = \sqrt{\frac{10}{11}}, \quad (1.10)$$

$$\overline{\left(\frac{3-i}{\sqrt{2}+3i} \right)} = \frac{3+i}{\sqrt{2}-3i} = \frac{(3+i)(\sqrt{2}+3i)}{(\sqrt{2}-3i)(\sqrt{2}+3i)} = \frac{3(\sqrt{2}-1)+i(9+\sqrt{2})}{11}. \quad (1.11)$$

5. We have

$$\left| \left(\frac{i}{i+3} \right) \right| = \frac{|i|}{|3+i|} = \frac{1}{\sqrt{10}}, \quad (1.12)$$

$$\overline{\left(\frac{i}{i+3} \right)} = \frac{\bar{i}}{\bar{3+i}} = \frac{-i}{3-i} = \frac{(-i)(3+i)}{(3-i)(3+i)} = \frac{1-3i}{10}. \quad (1.13)$$

6. We have

$$|(1+i)^6| = |1+i|^6 = \sqrt{2}^6 = 2^3 = 8, \quad (1.14)$$

$$\overline{(1+i)^6} = \overline{1+i}^6 = (1-i)^6 = (-2i)^3 = (-2)^3 i^3 = 8i. \quad (1.15)$$

7. We have

$$|i^{17}| = |i|^{17} = 1, \quad (1.16)$$

$$\overline{i^{17}} = \overline{i^{4 \cdot 4 + 1}} = \overline{i^4 \cdot i^1} = \overline{1 \cdot i} = \overline{i} = -i. \quad (1.17)$$

1.2.3 Exercise

- Suppose $z \in \mathbb{R}$, which in fact means $\operatorname{Im}(z) = 0$, and $\overline{z} = z$.
- Suppose $\overline{z} = z$. Then $\operatorname{Im}(z) = \frac{1}{2i}(z - \overline{z}) = 0$, which is the same as saying $z \in \mathbb{R}$.

1.2.4 Exercise

1. $|z+w|^2 = (z+w)(\overline{z+w}) = z\overline{z} + 2z\overline{w} + w\overline{w} = |z|^2 + z\overline{w} + \overline{(z\overline{w})} + |w|^2 = |z|^2 + 2\operatorname{Re}(z\overline{w}) + |w|^2$
2. $|z-w|^2 = |z|^2 + 2\operatorname{Re}(z\overline{(-w)}) + |-w|^2 = |z|^2 - 2\operatorname{Re}(z\overline{w}) + |w|^2$
3. $|z+w|^2 + |z-w|^2 = |z|^2 + 2\operatorname{Re}(z\overline{w}) + |w|^2 + |z|^2 - 2\operatorname{Re}(z\overline{w}) + |w|^2 = 2(|z|^2 + |w|^2)$

1.2.5 Exercise

- That $|w_1 w_2| = |w_1| |w_2|$ is already known. Now suppose $|w_1 w_2 \cdots w_n| = |w_1| |w_2| \cdots |w_n|$. Then $|w_1 w_2 \cdots w_{n+1}| = |w_1 w_2 \cdots w_n| |w_{n+1}| = |w_1| |w_2| \cdots |w_n| |w_{n+1}|$.
- That $\overline{w_1 w_2} = \overline{w_1} \overline{w_2}$ is already known. Now suppose $\overline{w_1 w_2 \cdots w_n} = \overline{w_1} \overline{w_2} \cdots \overline{w_n}$. Then $\overline{w_1 w_2 \cdots w_{n+1}} = \overline{w_1 w_2 \cdots w_n} \overline{w_{n+1}} = \overline{w_1} \overline{w_2} \cdots \overline{w_n} \overline{w_{n+1}}$.

1.2.6 Exercise

Let

$$R(z) = \frac{a_0 + a_1 z + \cdots + a_n z^n}{b_0 + b_1 z + \cdots + b_m z^m}, \quad (1.18)$$

where $a_i \in \mathbb{R}, 0 \leq n; b_j \in \mathbb{R}, 0 \leq m$. Then

$$\begin{aligned} \overline{R(z)} &= \overline{\frac{a_0 + a_1 z + \cdots + a_n z^n}{b_0 + b_1 z + \cdots + b_m z^m}} = \\ &= \frac{\overline{a_0} + \overline{a_1} \overline{z} + \cdots + \overline{a_n} \overline{z}^n}{\overline{b_0} + \overline{b_1} \overline{z} + \cdots + \overline{b_m} \overline{z}^m} = \\ &= \frac{a_0 + a_1 \overline{z} + \cdots + a_n \overline{z}^n}{b_0 + b_1 \overline{z} + \cdots + b_m \overline{z}^m} = \\ &= R(\overline{z}). \end{aligned}$$

1.3 The Complex Plane

1.3.1 Exercise

From

$$|z| \leq |z - w| + |w| \quad (1.19)$$

follows $|z| - |w| \leq |z - w|$, and from

$$|w| \leq |w - z| + |z| \quad (1.20)$$

follows $|w| - |z| \leq |z - w|$. So $||w| - |z|| \leq |z - w|$.

If equality holds, then either $|z| = |z - w| + |w|$ or $|w| = |w - z| + |z|$. Suppose $z \neq 0, w \neq 0$. In the former case, $z - w = tw$ for some $t \geq 0$, whence $z = (t + 1)w$; in the latter case $w - z = uz$ for some $u \geq 0$, whence $w = (u + 1)z$. In all cases, either $z = \alpha w$ for some $\alpha \geq 0$ or $w = \beta z$ for some $\beta \geq 0$.

1.3.2 Exercise

- Suppose $z_k/z_l \geq 0$ for $1 \leq k, l \leq n$ such that $z_l \neq 0$. Suppose $z_{\bar{k}} \neq 0$. In particular $z_k = \alpha_k z_{\bar{k}}$, $1 \leq k \leq n$, for some $\alpha_k \in \mathbb{R}^+$. Then

$$\begin{aligned} |z_1 + \cdots + z_n| &= |\alpha_1 z_{\bar{k}} + \cdots + \alpha_n z_{\bar{k}}| = |(\alpha_1 + \cdots + \alpha_n)z_{\bar{k}}| = \\ &= (\alpha_1 + \cdots + \alpha_n)|z_{\bar{k}}| = \alpha_1|z_{\bar{k}}| + \cdots + \alpha_n|z_{\bar{k}}| = \\ &= |\alpha_1 z_{\bar{k}}| + \cdots + |\alpha_n z_{\bar{k}}| = |z_1| + \cdots + |z_n|. \end{aligned}$$

- By induction. We know that

$$|z_1 + \cdots + z_n| = |z_1| + \cdots + |z_n|. \quad (1.21)$$

implies $z_i/z_j \geq 0$ for $1 \leq i, j \leq n$ and $z_j \neq 0$ if $n = 2$. So suppose that if the implication holds for n , it also holds for $n + 1$.

From

$$|z_1 + \cdots + z_{n+1}| = |z_1| + \cdots + |z_{n+1}| \quad (1.22)$$

we have

$$\begin{aligned} |z_1 + \cdots + z_{n+1}| &= |z_1| + \cdots + |z_{n+1}| \leq \\ &\leq |z_1 + \cdots + z_n| + |z_{n+1}| \leq \\ &\leq |z_1| + \cdots + |z_{n+1}| \end{aligned} \quad (1.23)$$

hence

$$|z_1 + \cdots + z_n| + |z_{n+1}| = |z_1| + \cdots + |z_{n+1}| \quad (1.24)$$

and

$$|z_1 + \cdots + z_n| = |z_1| + \cdots + |z_n|. \quad (1.25)$$

By the inductive hypothesis, this implies $z_i/z_j \geq 0$ for $1 \leq i, j \leq n$ and $z_j \neq 0$. So if $z_{\bar{k}} \neq 0$, let $z_i = \alpha_i z_{\bar{k}}$ for $1 \leq i \leq n$, and we have

$$\begin{aligned} |\alpha_1 z_{\bar{k}} + \cdots + \alpha_n z_{\bar{k}} + z_{n+1}| &= |\alpha_1 z_{\bar{k}}| + \cdots + |\alpha_n z_{\bar{k}}| + |z_{n+1}| \\ &= \alpha_1|z_{\bar{k}}| + \cdots + \alpha_n|z_{\bar{k}}| + |z_{n+1}| \\ &= |\alpha_1 z_{\bar{k}} + \cdots + \alpha_n z_{\bar{k}}| + |z_{n+1}| \end{aligned} \quad (1.26)$$

that is, if $\alpha = \sum_{i=1}^n \alpha_i$,

$$|\alpha z_{\bar{k}} + z_{n+1}| = |\alpha z_{\bar{k}}| + |z_{n+1}| \quad (1.27)$$

which implies $z_{n+1}/z_{\bar{k}} \geq 0$. This completes the proof that $z_i/z_j \geq 0$ for $1 \leq i, j \leq n + 1$ and $z_j \neq 0$.

1.3.3 Exercise

Since the equation

$$|z - a| - |z + a| = 2c \quad (1.28)$$

in the plane \mathbb{R}^2 says that the difference between the distances of the point $z = (x, y)$ from the points $(a, 0)$ and $(-a, 0)$ respectively is constant and equal to $2c$, there are three possible cases for the set

$$\mathcal{C} = \{(x, y) \in \mathbb{R}^2 \mid |z - a| - |z + a| = 2c\} \quad (1.29)$$

as follows

1. $c < |a|$: $\mathcal{C} = \emptyset$.
2. $c = |a|$: \mathcal{C} is the half line $x \geq a$ if $a \leq 0$ or $x \leq a$ if $a \geq 0$
3. $c > |a|$: \mathcal{C} is a *branch* of the hyperbola having focuses in the points $(a, 0)$ and $(-a, 0)$ and axes the lines $y = \pm\sqrt{(a^2 - c^2)/c^2}x$, namely the branch that encloses the point $(-a, 0)$.

If a is any complex number, the set \mathcal{C} is obtained from one of the former cases with the rotation that brings the point $(|a|, 0)$ to the point a . For example, in the third case \mathcal{C} is the branch of a hyperbola with focuses a and $-a$ that encloses the point $-a$.

1.4 Polar representation and roots of complex numbers

1.4.1 Exercise

Since $1 = \text{cis}(0)$, the equation $z^n = 1$ has roots

$$\text{cis}\left(\frac{2k\pi}{6}\right), \quad 0 \leq k \leq 5 \quad (1.30)$$

that is

$$\begin{aligned} z_1 &= \text{cis}(0) = 1 \\ z_2 &= \text{cis}\left(\frac{\pi}{3}\right) = \frac{1}{2} + i\frac{\sqrt{3}}{2} \\ z_3 &= \text{cis}\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + i\frac{\sqrt{3}}{2} \\ z_4 &= \text{cis}(\pi) = -1 \\ z_5 &= \text{cis}\left(\frac{4\pi}{3}\right) = -\frac{1}{2} - i\frac{\sqrt{3}}{2} \\ z_6 &= \text{cis}\left(\frac{5\pi}{3}\right) = \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{aligned}$$

1.4.2 Exercise

(a) Since $i = \text{cis}\left(\frac{\pi}{2}\right)$, the equation $z^2 = i$ has roots

$$\text{cis}\left(\frac{\pi}{4} + \frac{2k\pi}{2}\right), \quad 0 \leq k \leq 1 \quad (1.31)$$

that is

$$\begin{aligned} z_1 &= \text{cis}\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} \\ z_2 &= \text{cis}\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} \end{aligned}$$

(b) As before, the equation $z^3 = i$ has roots

$$\text{cis}\left(\frac{\pi}{6} + \frac{2k\pi}{3}\right), \quad 0 \leq k \leq 2 \quad (1.32)$$

that is

$$\begin{aligned} z_1 &= \text{cis}\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} + i\frac{1}{2} \\ z_2 &= \text{cis}\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2} + i\frac{1}{2} \\ z_3 &= \text{cis}\left(\frac{3\pi}{2}\right) = -i \end{aligned}$$

(c) Since $|\sqrt{3} + 3i| = \sqrt{12} = 2\sqrt{3}$, if $\theta = \arg(\sqrt{3} + 3i)$ it must be

$$\begin{cases} \cos \theta = \frac{\sqrt{3}}{2\sqrt{3}} = \frac{1}{2} \\ \sin \theta = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2} \end{cases} \quad (1.33)$$

whence $\theta = \frac{\pi}{3}$, and the equation $z^2 = \sqrt{3} + 3i$ has roots

$$\sqrt{2\sqrt{3}} \text{cis}\left(\frac{\pi}{6} + \frac{2k\pi}{2}\right), \quad 0 \leq k \leq 1 \quad (1.34)$$

that is

$$\begin{aligned} z_1 &= \sqrt{2\sqrt{3}} \text{cis}\left(\frac{\pi}{6}\right) = \sqrt{\frac{3\sqrt{3}}{2}} + i\sqrt{\frac{\sqrt{3}}{2}} \\ z_2 &= \sqrt{2\sqrt{3}} \text{cis}\left(\frac{7\pi}{6}\right) = -\sqrt{\frac{3\sqrt{3}}{2}} - i\sqrt{\frac{\sqrt{3}}{2}} \end{aligned}$$

1.4.3 Exercise

The first part is trivial:

$$(ab)^{nm} = a^{nm}b^{nm} = (a^n)^m(b^m)^n = (1)^m(1)^n = 1. \quad (1.35)$$

Of course any integer which is a multiple both of n and m would do, so the smallest value of k such that $(ab)^k = 1$ for any given a and b is the smallest common multiple $SMC(n, m)$ of n and m .

Yet that doesn't mean that, given a primitive n th root of unity and b primitive m th root of unity, $SMC(n, m)$ is the smallest integer k such that $(ab)^k = 1$. First, observe that x is a primitive r th root of unity, if and only if

$$r = \min \{k \in \mathbb{N}^+ \mid x^k = 1\} \quad (1.36)$$

and that if $x^s = 1$, then $r \mid s$. So if $(ab)^k = 1$, then

$$(ab)^{kn} = b^{kn} = 1$$

$$(ab)^{km} = a^{km} = 1$$

which yields that $m \mid kn$ and $n \mid km$. Then every prime divisor of n or m but not of both must divide as well k . To put it more clearly, if p is a prime, $p^u \mid n$, and $p^u \nmid m$, then $p^u \mid k$; and if $p^v \mid m$, and $p^v \nmid n$, then $p^v \mid k$. So k cannot be smaller than the product of all such powers of primes. But this doesn't give a minimum. Indeed, if

$$a = \text{cis}\left(\frac{\pi}{6}\right)$$

$$b = \text{cis}\left(\frac{\pi}{2}\right)$$

then a is a primitive 12th root of unity and b is a primitive 4th root of unity, and

$$ab = \text{cis}\left(\frac{2\pi}{3}\right) \quad (1.37)$$

so $(ab)^3 = 1$. But if

$$a = \text{cis}\left(\frac{\pi}{6}\right)$$

$$b = \text{cis}\left(\frac{2\pi}{3}\right)$$

then a is a primitive 12th root of unity and b is a primitive 3rd root of unity, but

$$ab = \text{cis}\left(\frac{5\pi}{6}\right) \quad (1.38)$$

and the smallest integer k such that $(ab)^k = 1$ is 12, not 4.

If one of a and b is nonprimitive, the said condition does not hold, for example -1 is a 2nd root of unity and also a 4th root of unity, but $(-1)(-1) = 1$.

1.4.4 Exercise

From

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$$

$$(\cos \theta - i \sin \theta)^n = \cos(n\theta) - i \sin(n\theta)$$

follows

$$\begin{aligned} \cos(n\theta) &= \frac{1}{2}((\cos \theta + i \sin \theta)^n + (\cos \theta - i \sin \theta)^n) = \\ &= \frac{1}{2} \left(\sum_{k=0}^n \binom{n}{k} (\cos \theta)^{n-k} (i \sin \theta)^k + \right. \\ &\quad \left. + \sum_{k=0}^n \binom{n}{k} (\cos \theta)^{n-k} (-i \sin \theta)^k \right) = \\ &= \frac{1}{2} \left(\sum_{k=0}^n \binom{n}{k} (\cos \theta)^{n-k} ((i \sin \theta)^k + (-i \sin \theta)^k) \right) = \\ &= (\cos \theta)^n - \binom{n}{2} (\cos \theta)^{n-2} (\sin \theta)^2 + \binom{n}{4} (\cos \theta)^{n-4} (\sin \theta)^4 - \dots \end{aligned}$$

and

$$\begin{aligned} \sin(n\theta) &= \frac{1}{2i}((\cos \theta + i \sin \theta)^n - (\cos \theta - i \sin \theta)^n) = \\ &= \frac{1}{2i} \left(\sum_{k=0}^n \binom{n}{k} (\cos \theta)^{n-k} (i \sin \theta)^k + \right. \\ &\quad \left. - \sum_{k=0}^n \binom{n}{k} (\cos \theta)^{n-k} (-i \sin \theta)^k \right) = \\ &= \frac{1}{2i} \left(\sum_{k=0}^n \binom{n}{k} (\cos \theta)^{n-k} ((i \sin \theta)^k - (-i \sin \theta)^k) \right) = \\ &= \binom{n}{1} (\cos \theta)^{n-1} \sin \theta - \binom{n}{3} (\cos \theta)^{n-3} (\sin \theta)^3 + \dots \end{aligned}$$

1.4.5 Exercise

It is enough to know that $z^n = 1$ and $z \neq 1$, since

$$(1 + z + z^2 + \dots + z^{n-1})(z - 1) = z^n - 1 = 0. \quad (1.39)$$

1.4.6 Exercise

Just a trivial check:

$$\varphi(t+s) = \operatorname{cis}(t+s) = \operatorname{cis}(t) \operatorname{cis}(s) = \varphi(t)\varphi(s). \quad (1.40)$$

1.4.7 Exercise

Let $z = r \operatorname{cis} \theta$, and suppose $\theta > 0$. We'll show that for some positive integer n it is $\operatorname{Re}(z^n) < 0$. If $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$ there's nothing to prove. If $0 < \theta \leq \frac{\pi}{2}$, then there is a positive integer n such that

$$\frac{1}{n+1} \frac{\pi}{2} < \theta \leq \frac{1}{n} \frac{\pi}{2} \quad (1.41)$$

which yields

$$\frac{\pi}{2} < (n+1)\theta \leq \frac{n+1}{n} \frac{\pi}{2} \leq \pi \quad (1.42)$$

so $\operatorname{Re}(z^{n+1}) = r^{n+1} \cos((n+1)\theta) < 0$.

If $\frac{3\pi}{2} \leq \theta < 2\pi$, let $\theta' = \theta - 2\pi$, so that $z = \operatorname{cis} \theta'$ and $-\frac{\pi}{2} \leq \theta' < 0$ and there is a positive integer n such that

$$-\frac{1}{n} \frac{\pi}{2} \leq \theta' < -\frac{1}{n+1} \frac{\pi}{2} \quad (1.43)$$

which yields

$$-\pi \leq -\frac{n+1}{n} \frac{\pi}{2} \leq \theta' < -\frac{\pi}{2} \quad (1.44)$$

and again $\operatorname{Re}(z^{n+1}) = r^{n+1} \cos((n+1)\theta) < 0$.

1.5 Lines and half planes in the complex plane

1.5.1 Exercise

The condition is that $\operatorname{cis} \beta \perp \operatorname{cis} \alpha$, that is $\beta = \alpha + \frac{\pi}{2}$ or $\beta = \alpha + \frac{3\pi}{2}$.

1.6 The extended plane and its spherical representation

1.6.1 Exercise

Using (6.3) expressions for x_1, x_2, x_3 and x'_1, x'_2, x'_3 in (6.6) we get

$$\begin{aligned} d(z, z')^2 &= \\ &= 2 - 2 \frac{(z + \bar{z})(z' + \bar{z}') + (-i(z - \bar{z}))(-i(z' - \bar{z}')) + (|z|^2 - 1)(|z'|^2 - 1)}{(|z|^2 + 1)(|z'|^2 + 1)} \\ &= \frac{2(z\bar{z} + 1)(z'\bar{z}' + 1) - 4z\bar{z}' - 4\bar{z}z' - 2z\bar{z}z'\bar{z}' + 2z\bar{z} + 2z'\bar{z}' - 2}{(|z|^2 + 1)(|z'|^2 + 1)} = \\ &= \frac{4z'\bar{z}' + 4z\bar{z} - 4z\bar{z}' - 4\bar{z}z'}{(|z|^2 + 1)(|z'|^2 + 1)} = \\ &= 4 \frac{(z - z')\bar{(z - z')}}{(|z|^2 + 1)(|z'|^2 + 1)} = \\ &= 4 \frac{|z - z'|^2}{(|z|^2 + 1)(|z'|^2 + 1)}. \end{aligned}$$

If $z' = \infty$, then $x'_1 = 0$, $x'_2 = 0$ and $x'_3 = 1$, then

$$d(z, \infty)^2 = 2 - 2 \frac{|z|^2 - 1}{|z|^2 + 1} = \frac{4}{|z|^2 + 1}. \quad (1.45)$$

1.6.2 Exercise

1. $(0, 0, 1)$
2. $(\frac{2}{3}, \frac{2}{3}, \frac{1}{3})$
3. $(\frac{3}{7}, \frac{2}{7}, \frac{6}{7})$

1.6.3 Exercise

Two circumferences of maximum radius 1, lying in the coordinate planes x_1x_3 and x_2x_3 respectively.

1.6.4 Exercise

First, observe that $N \in \Lambda \iff \beta_3 = l$. Then, if the point (x_1, x_2, x_3) of \mathbb{R}^3 lies in the plane P , using (6.2) we get

$$\frac{2\beta_1x + 2\beta_2y + \beta_3(|z|^2 - 1)}{|z|^2 + 1} = l \quad (1.46)$$

and, being $|z|^2 = x^2 + y^2$,

$$(\beta_3 - l)x^2 + (\beta_3 - l)y^2 + 2\beta_1x + 2\beta_2y - (\beta_3 + l) = 0. \quad (1.47)$$

Now, if $N \in \Lambda$ then $\beta_3 = l$, and the former equation becomes

$$\beta_1x + \beta_2y - 2l = 0 \quad (1.48)$$

otherwise

$$x^2 + y^2 + \frac{2\beta_1}{\beta_3 - l}x + \frac{2\beta_2}{\beta_3 - l}y + \frac{l + \beta_3}{l - \beta_3} = 0. \quad (1.49)$$

1.6.5 Exercise

Let $X = (x_1, x_2, x_3) \in S - N$ and $Y = (y_1, y_2, y_3) \in S - N$, and let $\phi : S \rightarrow \mathbb{C}$ be the stereographic projection. Then, as we know

$$\begin{aligned} \phi(X) &= \frac{x_1 + ix_2}{1 - x_3} \\ \phi(Y) &= \frac{y_1 + iy_2}{1 - y_3} \end{aligned}$$

whence

$$\phi(X) + \phi(Y) = \left(\frac{x_1}{1 - x_3} + \frac{y_1}{1 - y_3} \right) + i \left(\frac{x_2}{1 - x_3} + \frac{y_2}{1 - y_3} \right). \quad (1.50)$$

Let $z = x + iy = \phi(X) + \phi(Y)$, then

$$\begin{aligned} x &= \frac{x_1}{1 - x_3} + \frac{y_1}{1 - y_3} = \frac{x_1(1 - y_3) + y_1(1 - x_3)}{(1 - x_3)(1 - y_3)} \\ y &= \frac{x_2}{1 - x_3} + \frac{y_2}{1 - y_3} = \frac{x_2(1 - y_3) + y_2(1 - x_3)}{(1 - x_3)(1 - y_3)} \end{aligned}$$

and

$$\phi^{-1}(z) = \left(\frac{2x}{|z|^2 + 1}, \frac{2y}{|z|^2 + 1}, \frac{|z|^2 - 1}{|z|^2 + 1} \right). \quad (1.51)$$

Now

$$\begin{aligned}
 |z|^2 + 1 &= x^2 + y^2 = \\
 &= \frac{x_1^2}{(1-x_3)^2} + \frac{2x_1y_1}{(1-x_3)(1-y_3)} + \frac{y_1^2}{(1-y_3)^2} + \\
 &\quad + \frac{x_2^2}{(1-x_3)^2} + \frac{2x_2y_2}{(1-x_3)(1-y_3)} + \frac{y_2^2}{(1-y_3)^2} + 1 = \\
 &= \frac{(x_1^2 + x_2^2)(1-y_3^2) + 2(x_1y_1 + x_2y_2)(1-x_3)(1-y_3) + (y_1^2 + y_2^2)(1-x_3^2)}{(1-x_3)^2(1-y_3)^2} + 1 = \\
 &= \frac{(x_1^2 + x_2^2)(1-y_3^2) + 2(x_1y_1 + x_2y_2)(1-x_3)(1-y_3) + (y_1^2 + y_2^2)(1-x_3^2)}{(1-x_3)^2(1-y_3)^2} + \\
 &\quad + \frac{2(1-x_3)^2(1-y_3)^2 - (1-x_3)^2(1-y_3)^2}{(1-x_3)^2(1-y_3)^2} = \\
 &= \frac{(x_1^2 + x_2^2 + 1 - 2x_3 + x_3^2)(1-y_3^2)}{(1-x_3)^2(1-y_3)^2} + \\
 &\quad + \frac{(y_1^2 + y_2^2 + 1 - 2y_3 + y_3^2)(1-x_3^2)}{(1-x_3)^2(1-y_3)^2} + \\
 &\quad + \frac{2(x_1y_1 + x_2y_2)(1-x_3)(1-y_3) - (1-x_3)^2(1-y_3)^2}{(1-x_3)^2(1-y_3)^2} = \\
 &= \frac{2(1-x_3)(1-y_3^2) + 2(1-y_3)(1-x_3^2)}{(1-x_3)^2(1-y_3)^2} + \\
 &\quad + \frac{2(x_1y_1 + x_2y_2)(1-x_3)(1-y_3) - (1-x_3)^2(1-y_3)^2}{(1-x_3)^2(1-y_3)^2} \\
 &= \frac{(1-x_3)(1-y_3)[2(1-x_3) + 2(1-y_3) + 2x_1y_1 + 2x_2y_2 - (1-x_3)(1-y_3)]}{(1-x_3)^2(1-y_3)^2} \\
 &= \frac{(1-x_3)(1-y_3)[3 + 2x_1y_1 + 2x_2y_2 - x_3y_3 - x_3 - y_3]}{(1-x_3)^2(1-y_3)^2} \\
 &= \frac{2x_1y_1 + 2x_2y_2 - x_3y_3 - x_3 - y_3 + 3}{(1-x_3)(1-y_3)}
 \end{aligned}$$

and, with similar calculations

$$|z|^2 - 1 = \frac{2x_1y_1 + 2x_2y_2 - 3x_3y_3 + x_3 + y_3 + 1}{(1-x_3)(1-y_3)}. \quad (1.52)$$

Finally

$$\phi^{-1}(\phi(X) + \phi(Y)) = \begin{pmatrix} \frac{2[x_1(1-y_3) + y_1(1-x_3)]}{2x_1y_1 + 2x_2y_2 - x_3y_3 - x_3 - y_3 + 3} \\ \frac{2[x_2(1-y_3) + y_2(1-x_3)]}{2x_1y_1 + 2x_2y_2 - x_3y_3 - x_3 - y_3 + 3} \\ \frac{2x_1y_1 + 2x_2y_2 - x_3y_3 + x_3 + y_3 + 1}{2x_1y_1 + 2x_2y_2 - x_3y_3 - x_3 - y_3 + 3} \end{pmatrix} \quad (1.53)$$

Chapter 2

Metric Spaces and the Topology of \mathbb{C}

2.1 Definition and examples of metric spaces

2.1.1 Exercise

1. In both cases, that is, \mathbb{R} and \mathbb{C} , we know that
 - (a) $|z - w| \geq 0$ for all $z, w \in X$
 - (b) $|z - w| = 0 \iff z - w = 0 \iff z = w$ for all $z, w \in X$
 - (c) $|z - w| = |-(z - w)| = |w - z|$ for all $z, w \in X$
 - (d) $|z - u| = |(z - w) + (w - u)| \leq |z - w| + |w - u|$ for all $z, w, u \in X$
2. It is more correct to consider (Y, \bar{d}) , where $\bar{d} = d_{|Y \times Y}$. Then, the conditions for \bar{d} follow immediately from the ones for d .
3. Obvious.
4. The first three conditions are obvious. As for the last one, one has:

$$\begin{aligned} d(a + ib, c + id) &= \max \{|a - c|, |b - d|\} \\ d(c + id, e + if) &= \max \{|c - e|, |d - f|\} \\ d(a + ib, e + if) &= \max \{|a - e|, |b - f|\} \end{aligned}$$

and

$$\begin{aligned} |a - e| &\leq |a - c| + |c - e| \\ |b - f| &\leq |b - d| + |d - f| \end{aligned}$$

whence

$$\max \{|a - e|, |b - f|\} \leq \max \{|a - c| + |c - e|, |b - d| + |d - f|\} \quad (2.1)$$

and using the easy-to-check inequality

$$\max \{x + y, u + v\} \leq \max \{x, u\} + \max \{y + v\} \quad (2.2)$$

one gets the result.

5. The first three conditions are easy as usual. To prove the last one, one has to use *Schwarz inequality*, which will be proved later:

$$\left| \sum_{i=1}^n a_i b_i \right| \leq \sqrt{\sum_{i=1}^n a_i^2} \sqrt{\sum_{i=1}^n b_i^2} \quad \text{for any } a, b \in \mathbb{R}. \quad (2.3)$$

Now, if $X = (x_1, x_2, \dots, x_n)$, $Y = (y_1, y_2, \dots, y_n)$ and $Z = (z_1, z_2, \dots, z_n)$ are three points of \mathbb{R}^n , one has

$$\begin{aligned}
 d(X, Z)^2 &= \sum_{i=1}^n (x_i - z_i)^2 = \sum_{i=1}^n ((x_i - y_i) + (y_i - z_i))^2 = \\
 &= \sum_{i=1}^n (x_i - y_i)^2 + \sum_{i=1}^n (y_i - z_i)^2 + 2 \sum_{i=1}^n (x_i - z_i)(y_i - z_i) \leq \\
 &\leq \sum_{i=1}^n (x_i - y_i)^2 + \sum_{i=1}^n (y_i - z_i)^2 + 2 \left| \sum_{i=1}^n (x_i - z_i)(y_i - z_i) \right| \leq \\
 &\leq \sum_{i=1}^n (x_i - y_i)^2 + \sum_{i=1}^n (y_i - z_i)^2 + \\
 &\quad + 2 \sqrt{\sum_{i=1}^n (x_i - y_i)^2} \sqrt{\sum_{i=1}^n (y_i - z_i)^2} = \\
 &= \left(\sqrt{\sum_{i=1}^n (x_i - y_i)^2} + \sqrt{\sum_{i=1}^n (y_i - z_i)^2} \right)^2 = \\
 &= (d(X, Y) + d(Y, Z))^2.
 \end{aligned}$$

As for Schwarz inequality, if λ , a and b are any three real numbers, one has

$$\left(\lambda a - \frac{1}{\lambda} b \right)^2 = \lambda^2 a^2 + \frac{b^2}{\lambda^2} - 2ab \geq 0 \quad (2.4)$$

whence

$$2ab \leq \lambda^2 a^2 + \frac{b^2}{\lambda^2} \quad (2.5)$$

and

$$\left(\lambda a + \frac{1}{\lambda} b \right)^2 = \lambda^2 a^2 + \frac{b^2}{\lambda^2} + 2ab \geq 0 \quad (2.6)$$

whence

$$-2ab \leq \lambda^2 a^2 + \frac{b^2}{\lambda^2} \quad (2.7)$$

and from these two

$$2|ab| \leq \lambda^2 a^2 + \frac{b^2}{\lambda^2}. \quad (2.8)$$

So, if a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n are real numbers,

$$2 \left| \sum_{i=1}^n a_i b_i \right| \leq \lambda^2 \sum_{i=1}^n a_i^2 + \frac{1}{\lambda^2} \sum_{i=1}^n b_i^2 \quad (2.9)$$

and eventually, choosing

$$\lambda^2 = \frac{\sqrt{\sum_{i=1}^n b_i^2}}{\sqrt{\sum_{i=1}^n a_i^2}} \quad (2.10)$$

one gets the result.

2.1.2 Exercise

(a) $X = B(O, 1)$ is open. If $x \in X$, let $r = 1 - d(O, x)$; clearly $r > 0$; then $B(x, r) \subseteq X$: if $y \in B(x, r)$, then $d(O, y) \leq d(O, x) + d(x, y) < d(O, x) + r = d(O, x) + 1 - d(O, x) = r$, so $y \in B(O, x)$.

(b) $X = \{z \in \mathbb{C} \mid \operatorname{Im} z = 0\}$ is closed, since $\mathbb{C} - X$ is open. If $z = x + iy \in \mathbb{C} - X$, then $B(z, |y|) \subseteq \mathbb{C} - X$: suppose for instance $y > 0$, and let $w = u + iv \in B(z, |y|)$; if $v \leq 0$, then $d(z, w) = \sqrt{(u-x)^2 + (v-y)^2} \geq \sqrt{(v-y)^2} = |v-y| = y - v \geq y$ which is impossible since $w \in B(z, |y|)$; so it must be $v > 0$ and then $w \in \mathbb{C} - X$.

(c) $X = \{z \in \mathbb{C} \mid \exists n \in \mathbb{N}^+ : z^n = 1\}$ is not open. First, observe that if $z \in X$ then $|z| = 1$. Furthermore, $1 \in X$, and in every open ball $B(1, r)$ there is an element, for instance $1 + r/2$, such that $|1 + r/2| > 1$, that is $1 + r/2 \notin X$ and $B(1, r) \not\subseteq X$. To show that X is not closed, observe that $|\operatorname{cis}(1)| = 1$ but $\operatorname{cis}(1) \notin X$. Since we know that \sin and \cos are continuous functions, surely for any $\epsilon > 0$ there exists a δ such that $\sqrt{(\sin(t) - \sin(1))^2 + (\cos(t) - \cos(1))^2} < \epsilon$ whenever $|t - 1| < \delta$, that is $d(\operatorname{cis}(t), \operatorname{cis}(1)) < \epsilon$ if $|t - 1| < \delta$. Now, take n such that $\pi/n < \delta$ and

$$\bar{k} = \min \left\{ k \in \mathbb{N} \mid 0 \leq k \leq n-1, \frac{2k\pi}{n} > 1 - \delta \right\}. \quad (2.11)$$

Clearly,

$$\frac{2\bar{k}\pi}{n} < 1 + \delta \quad (2.12)$$

because

$$\frac{2\bar{k}\pi}{n} \geq 1 + \delta \quad (2.13)$$

yields

$$\frac{2(\bar{k}-1)\pi}{n} = \frac{2\bar{k}\pi}{n} - \frac{2\pi}{n} > \frac{2\bar{k}\pi}{n} - 2\delta \geq 1 - \delta \quad (2.14)$$

which contradicts the minimality of \bar{k} . So

$$\left| \frac{2\bar{k}\pi}{n} - 1 \right| < \delta \quad (2.15)$$

which implies that

$$\left| \operatorname{cis}\left(\frac{2\bar{k}\pi}{n}\right) - \operatorname{cis}(1) \right| < \epsilon. \quad (2.16)$$

What we have proved is this: given any $\epsilon > 0$ there exists an element $z = \operatorname{cis}(2\bar{k}\pi/n)$ in X such that $z \in B(1, \epsilon)$, so $\mathbb{C} - X$ is not open and X is not closed.

(d) $X = \{z \in \mathbb{C} \mid \operatorname{Im} z = 0, 0 \leq \operatorname{Re} z < 1\}$ is not open: clearly $0 \in X$, but there is no $r > 0$ such that $B(0, r) \subseteq X$, as for instance $ir/2 \in B(0, r)$ but $ir/2 \notin X$. X is not closed: $1 \notin X$ but there is no $r > 0$ such that $B(1, r) \subseteq \mathbb{C} - X$, as for instance, if $\eta = \min\{r/2, 1/2\}$, $1 - \eta \in B(1, r)$ but $1 - \eta \notin \mathbb{C} - X$ as $1 - \eta \in X$.

(e) $X = \{z \in \mathbb{C} \mid \operatorname{Im} z = 0, 0 \leq \operatorname{Re} z \leq 1\}$ is closed: $X = Y \cap Z$ where $Y = \{z \in \mathbb{C} \mid \operatorname{Im} z = 0\}$ and $Z = \{z \in \mathbb{C} \mid 0 \leq \operatorname{Re} z \leq 1\}$; we have already seen that the real axis Y is closed, and it is easy to see that Z is closed too: if $z \in \mathbb{C} - Z$ and for instance $\operatorname{Re} z > 1$, then $B(z, (\operatorname{Re} z - 1)/2) \subseteq \mathbb{C} - Z$. Similarly if $\operatorname{Re} z < 0$.

2.1.3 Exercise

The open ball $B(x, r)$ is open because, if $y \in B(x, r)$, then $B(y, r - d(x, y)) \subseteq B(x, r)$: in fact, if $z \in B(y, r - d(x, y))$, then $d(y, z) < r - d(x, y)$ and $d(x, z) \leq d(x, y) + d(y, z) < d(x, y) + r - d(x, y) = r$ so $z \in B(x, r)$.

The closed ball $\bar{B}(x, r)$ is indeed closed because, if $y \in X - \bar{B}(x, r)$, then $B(y, d(x, y) - r) \subseteq X - \bar{B}(x, r)$: in fact, if $z \in B(y, d(x, y) - r)$ then $d(y, z) < d(x, y) - r$ and $d(x, y) \leq d(x, z) + d(z, y)$ whence $d(x, z) \geq d(x, y) - d(y, z) > d(x, y) + r - d(x, y) = r$ so $z \notin \bar{B}(x, r)$ and $z \in X - \bar{B}(x, r)$.

2.1.4 Exercise

If all the sets G_j , $j \in J$ are open and $x \in \bigcup_{j \in J} G_j$, then there is at least an index $j_0 \in J$ such that $x \in G_{j_0}$; then there is an open ball $B(x, r)$ such that $B(x, r) \subseteq G_{j_0}$ which yields $B(x, r) \subseteq \bigcup_{j \in J} G_j$.

2.1.5 Exercise

As stated, it is just a trivial and straightforward application of de Morgan's laws to Proposition 1.9

2.1.6 Exercise

Just observe that $G = X - (X - G)$.

2.1.7 Exercise

More generally: if (X, d) is a metric space and $\phi : X \rightarrow Y$ is a bijection, then one can give Y a metric space structure, defining $d' : Y \times Y \rightarrow \mathbb{R}$ by $d'(y_1, y_2) = d(\phi^{-1}(y_1), \phi^{-1}(y_2))$. It is a routine check to prove that the function d' satisfies the conditions in order to be a distance function.

2.1.8 Exercise

Let G be an open subset of X and $Y \subseteq X$. If $x \in G \cap Y$, since $x \in G$ and G is open, there is an open ball $B(x, r)$ of X such that $B(x, r) \subseteq G$; then $B(x, r) \cap Y$ is an open ball of Y and $B(x, r) \cap Y \subseteq G \cap Y$.

Let G be an open subset of Y (that is, in the topology of Y induced by the distance function d restricted to Y). Then for every $x \in G$ there is an open ball of Y $B_Y(x, r_x)$ such that $B_Y(x, r_x) \subseteq G$, where $B_Y(x, r_x) = B(x, r_x) \cap Y$, and $B(x, r_x) = \{y \in X \mid d(x, y) < r_x\}$. Clearly we have

$$G = Y \cap \left(\bigcup_{x \in G} B(x, r_x) \right) \quad (2.17)$$

and

$$A = \bigcup_{x \in G} B(x, r_x) \quad (2.18)$$

is an open subset of X .

2.1.9 Exercise

Let G be a closed subset of X and $Y \subseteq X$. Then $X - G$ is an open subset of X , and $(X - G) \cap Y$ is an open subset of Y , as seen in Exercise 8. Since clearly $Y - G = (X - G) \cap Y$, G is a closed subset of Y .

Let G be a closed subset of Y (that is, in the topology of Y induced by the distance function d restricted to Y). Then $Y - G$ is an open subset of Y , so, as seen in Exercise 8, there is an open subset A of X such that $Y - G = A \cap Y$ and clearly $G = (X - A) \cap Y$.

2.1.10 Exercise

Here \ddot{A} will denote the interior of the set A and \overline{A} the closure of the set A .

(a) If $\ddot{A} = A$, then A is open, since so is \ddot{A} being union of open sets. If A is open, clearly $A \subseteq \ddot{A}$, as $A \subseteq A$. But for any set S it is true that $\ddot{S} \subseteq S$, being \ddot{S} union of subsets of S .

(b) If $\overline{A} = A$, then A is closed, since so is \overline{A} being intersection of closed sets. If A is closed, clearly $A \supseteq \overline{A}$, as $A \supseteq A$. But for any set S it is true that $\overline{S} \supseteq S$, being \overline{S} intersection of supersets of S .

(c)

1. Since $X - \overline{(X - A)}$ is open and $X - \overline{(X - A)} \subseteq A$, we have $X - \overline{(X - A)} \subseteq \ddot{A}$. Furthermore, $X - \ddot{A}$ is closed and $X - \ddot{A} \supseteq X - A$, then $X - \ddot{A} \supseteq \overline{X - A}$ and $\ddot{A} \subseteq \overline{X - A}$.
2. Since $X - \overline{(X - A)}$ is closed and $X - \overline{(X - A)} \supseteq A$, we have $X - \overline{(X - A)} \supseteq \overline{A}$. Furthermore, $X - \overline{A}$ is open and $X - \overline{A} \subseteq X - A$, then $X - \overline{A} \subseteq \overline{X - A}$ and $\overline{A} \supseteq \overline{X - A}$.

3. Since $\partial A = \overline{A} \cap \overline{(X - A)}$, then $\partial A \subseteq \overline{A}$ and $\partial A \subseteq \overline{(X - A)}$ and from the latter and Point 1 we get $\partial A \subseteq X - \ddot{A}$, so $\partial A \subseteq \overline{A} - \ddot{A}$.
 Clearly, $\overline{A} - \ddot{A} \subseteq \overline{A}$; also, $\overline{A} - \ddot{A} \subseteq X - \ddot{A}$ so, by Point 2, $\overline{A} - \ddot{A} \subseteq \overline{(X - A)}$. Then $\overline{A} - \ddot{A} \subseteq \overline{A} \cap \overline{(X - A)} = \partial A$.

(d) Both $A \subseteq \overline{A \cup B}$ and $B \subseteq \overline{A \cup B}$ hold, so both $\overline{A} \subseteq \overline{A \cup B}$ and $\overline{B} \subseteq \overline{A \cup B}$ hold too, whence $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$.
 Furthermore, $\overline{A} \cup \overline{B}$ is a closed subset of X and $A \cup B \subseteq \overline{A} \cup \overline{B}$, so $\overline{(A \cup B)} \subseteq \overline{A} \cup \overline{B}$.

(e) If $x \in \ddot{A}$, there exists an open set B such that $x \in B \subseteq A$, and then there is an open ball $B(x, r)$ such that $B(x, r) \subseteq B$; clearly $B(x, r) \subseteq A$.
 If there is an open ball $B(x, r)$ such that $B(x, r) \subseteq A$, then $B(x, r) \subseteq \ddot{A}$ and $x \in \ddot{A}$.

2.1.11 Exercise

Here we use the well known fact that if α is an irrational number the set $\{n + m\alpha \mid n \in \mathbb{N}, m \in \mathbb{Z}\}$ is dense in \mathbb{R} .

Now, if $t \in T = \{z \in \mathbb{C} \mid |z| = 1\}$, there is a real number β such that $t = \text{cis } \beta$ and for any $\epsilon > 0$ there exists δ such that $|\theta - \beta| < \delta$ implies $|\text{cis } \theta - \text{cis } \beta| = |\text{cis } \theta - t| < \epsilon$. For the said well known fact, there exist two integers n and m with $n \geq 0$ such that $|n + 2m\pi - \beta| < \delta$, which yields $|\text{cis}(n + 2m\pi) - \text{cis } \beta| = |\text{cis } n - t| < \epsilon$. So we have proved that for any $t \in T$ and for any $\epsilon > 0$ in the open ball $B(t, \epsilon)$ lies an element of $S = \{\text{cis } k \mid k \in \mathbb{N}\}$, and this for Point (f) of Proposition 1.13 means that every point t of T belongs to \overline{S} , that is, $T \subseteq \overline{S}$. But since T is closed and $T \supseteq S$, also $\overline{S} \subseteq T$ holds, and eventually $T = \overline{S}$.

To prove that T is closed, just observe that if $\notin T$, then $B(z, |z| - 1) \subseteq X - T$. Or better still, that $T = \overline{B}(0, 1) \cap (X - B(0, 1))$.

The set $S_\theta = \{\text{cis } k\theta \mid k \in \mathbb{N}\}$ is dense in T if π/θ is irrational: just as before, for any $\beta \in \mathbb{R}$ and for any $\delta > 0$ there are two integers n and m with $n \geq 0$ such that $|n + 2m\pi/\theta - \beta/\theta| < \delta/|\theta|$ or $|n\theta + 2m\pi - \beta| < \delta$, then if $t = \text{cis } \beta \in T$, for any $\epsilon > 0$ there are two integers n and m with $n \geq 0$ such that $|\text{cis}(n\theta + 2m\pi) - \text{cis } \beta| = |\text{cis } n\theta - t| < \epsilon$.

The set $S_\theta = \{\text{cis } k\theta \mid k \in \mathbb{N}\}$ is not dense in T if π/θ is rational: if $\pi/\theta = p/q$ with $p \in \mathbb{Z}$ and $q \in \mathbb{Z}$, then $\text{cis } k\theta = \text{cis } kq\pi/p$ which can take only $2p$ distinct values for $k = 0, 1, \dots, 2p - 1$.

So the set $S_\theta = \{\text{cis } k\theta \mid k \in \mathbb{N}\}$ is dense in T if and only if π/θ is irrational.

2.2 Connectedness

2.2.1 Exercise

(a) If A is an interval, here it means that there are two real numbers α and β and one of the following cases holds: $A = (\alpha, \beta)$, $A = (\alpha, \beta]$, $A = [\alpha, \beta)$, $A = [\alpha, \beta]$. In the first case, for instance, if $a, b \in A$ and $a < b$, then $a > \alpha$ and $b < \beta$, so if $a \leq x \leq b$ then also $x > \alpha$ and $x < \beta$, so $x \in A$. The same in the other cases.

(b) Simply apply Theorem 2.3.

2.2.2 Exercise

Let $\phi(s) = sb + (1 - s)a$ for $s \in [0, 1]$. If $s_0 \in S = \{s \in [0, 1] \mid \phi(s) \in A\}$, then $\bar{a} = \phi(s_0) \in A$; as A is an open subset of G , there is a ball $B_G(\bar{a}, r) = \{z \in G \mid |z - \bar{a}| < r\}$ such that $B_G(\bar{a}, r) \subseteq A$. So if $|s - s_0| < r/|b - a|$, then $|\phi(s) - \phi(s_0)| < r$, which yields that $\phi(s) \in A$, and we get $B(s_0, r/|b - a|) \subseteq S$.

The same for T .

2.2.3 Exercise

(a) X is connected. Let $A = \{z \in \mathbb{C} \mid |z| < 1\}$ and $B = \{z \in \mathbb{C} \mid |z - 2| < 1\}$; then $X = \overline{A} \cup B$. A is connected and so is \overline{A} by Proposition 2.8 (a); B is connected; $1 \in \overline{A} \cap B$, so by Lemma 2.6 X is connected.

(b) X is not connected. If $x \in [0, 1]$, the component of x must be an interval I and $[0, 1] \subseteq I$; since also $I \subseteq X$, the only possibility is $I = [0, 1]$.

Since for $n \geq 1$

$$1 + \frac{1}{n+1} < 1 + \frac{1}{n} + \frac{1}{2n(n+1)} < 1 + \frac{1}{n} < 1 + \frac{1}{n} + \frac{1}{2n(n-1)} < 1 + \frac{1}{n-1} \quad (2.19)$$

and

$$\frac{1}{2n(n+1)} < \frac{1}{2n(n-1)} \quad (2.20)$$

we have $B(\frac{1}{n}, \frac{1}{2n(n+1)}) \cap X = \{1 + \frac{1}{n}\}$ so the component of $1 + \frac{1}{n}$ is $\{1 + \frac{1}{n}\}$.

(c) X is not connected and its components are

$$C_k = \{r \operatorname{cis} \theta \mid 2k\pi < \theta < 2(k+1)\pi, \theta < r < \theta + 2\pi, k \in \mathbb{N}\} \quad (2.21)$$

but to prove it without arcwise connectedness would be a folly.

2.2.4 Exercise

If D were not connected, there would be at least two components C_1 and C_2 of D . If $x_1 \in C_1$, $x_2 \in C_2$, there must be D_{j_1} and D_{j_2} such that $x_1 \in D_{j_1}$ and $x_2 \in D_{j_2}$, and since D_{j_1} and D_{j_2} are connected, we have $D_{j_1} \subseteq D_1$ and $D_{j_2} \subseteq D_2$. But since $D_{j_1} \cap D_{j_2} \neq \emptyset$, also $D_1 \cap D_2 \neq \emptyset$ holds, which is impossible.

2.2.5 Exercise

Take $a \in F$ and for $\epsilon > 0$ call A_ϵ the set of all points b of F such that there are points z_0, z_1, \dots, z_n in F with $z_0 = a$, $z_n = b$ and $d(z_{k-1}, z_k) < \epsilon$ for $1 \leq k \leq n$. The set A_ϵ is open in F , since if $x \in A_\epsilon$ and $y \in B_F(x, \epsilon)$ clearly $y \in A_\epsilon$. But $F - A_\epsilon$ is open in F too: if $x \in F - A_\epsilon$ and there were $y \in A_\epsilon \cap B_F(x, \epsilon)$ then $x \in A_\epsilon$, a contradiction, so $B_F(x, \epsilon) \subseteq F - A_\epsilon$. Now we have that if $F - A_\epsilon \neq \emptyset$ then F is not connected, since F it is connected, then $F - A_\epsilon = \emptyset$ and $A_\epsilon = F$. Being ϵ any positive real number, the statement is proved. It looks like the fact that F is closed is not needed.

The set $F = \{(x, y) \in \mathbb{R}^2 \mid x \neq 0, y = 1/|x|\}$ satisfies the given condition and is closed, but it is not connected.

2.3 Sequences and completeness

2.3.1 Exercise

(a) If A is closed, by Proposition 3.2 A contains all the points to which some sequence in A converges, in particular all its limit points.

If A is not closed, take $x \in \overline{A} - A$. If $x_0 \in A$, then $d(x, x_0) > 0$, so take $n_1 = \min \{n \in \mathbb{N} \mid 1/n < d(x, x_0)\}$; since $x_0 \notin B(x, 1/n_1)$, there is a point x_1 such that $x_1 \in B_A(x, 1/n_1)$ and $x_1 \neq x_0$. Going on in this way, we have a sequence x_k in A whose points are all distinct, a sequence of natural numbers n_k such that $n_k < n_{k+1}$ for each k , and $\lim x_k = x$: if $\epsilon > 0$, there is \bar{k} such that $1/n_{\bar{k}} < \epsilon$, so $x_{\bar{k}} \in B_A(x, \epsilon)$. This shows that x is a limit point of A , so if A is not closed, it does not contain all its limit points.

(b) Call A^l the set of all limit points of A . From the proof of point (a) we know that if $x \in \overline{A} - A$ then $x \in A^l$, so $\overline{A} \subseteq A \cup A^l$.

Now take $x \in A \cup A^l$. If $x \in A$, then $x \in \overline{A}$. If $x \notin \overline{A}$, there is a ball $B(x, r)$ of X such that $B(x, r) \cap A = \emptyset$, so $x \notin A^l$; then $x \in A^l$ implies $x \in \overline{A}$. Eventually $A \cup A^l \subseteq \overline{A}$.

2.3.2 Exercise

If x_n is a Cauchy sequence in Y , it is a Cauchy sequence in X too, since the metric is the same, so $\lim x_n = x$ for some $x \in X$. By Proposition 3.2 $x \in Y$, and Y is complete.

2.3.3 Exercise

If $x \in \overline{A}$ and $y \in \overline{A}$, for every $\epsilon > 0$ there are two points $\bar{x} \in A$ and $\bar{y} \in A$ such that $d(x, \bar{x}) < \epsilon$ and $d(y, \bar{y}) < \epsilon$. Then for every $\epsilon > 0$ we have $d(x, y) \leq d(x, \bar{x}) + d(\bar{x}, \bar{y}) + d(\bar{y}, y) < d(\bar{x}, \bar{y}) + 2\epsilon \leq \text{diam } A + 2\epsilon$, which implies $d(x, y) \leq \text{diam } A$, whence $\text{diam } \overline{A} \leq \text{diam } A$. Since $A \subseteq \overline{A}$ we have also $\text{diam } A \leq \text{diam } \overline{A}$, then $\text{diam } A = \text{diam } \overline{A}$.

2.3.4 Exercise

We know that

$$d(z_n, z) = \frac{2|z_n - z|}{\sqrt{(1 + |z_n|^2)(1 + |z|^2)}}. \quad (2.22)$$

Since $||z_n| - |z|| \leq |z_n - z|$, if $|z_n - z| \rightarrow 0$ then $|z_n| \rightarrow |z|$, and $d(z_n, z) \rightarrow 0$. Since $d(z, \infty) - d(z_n, z) \leq d(z_n, \infty) \leq d(z_n, z) + d(z, \infty)$, if $d(z_n, z) \rightarrow 0$ then $d(z_n, \infty) \rightarrow d(z, \infty)$, or

$$\frac{2}{\sqrt{1 + |z_n|^2}} \rightarrow \frac{2}{\sqrt{1 + |z|^2}} \quad (2.23)$$

which yields again $|z_n| \rightarrow |z|$ and $|z_n - z| = d(z_n, z) \sqrt{(1 + |z_n|^2)(1 + |z|^2)} \rightarrow 0$.

Now suppose $|z_n| \rightarrow +\infty$. Since for $z \in \mathbb{C}$ and $v \in \mathbb{C}$ we have the inequality $|z - v| \leq \sqrt{2}\sqrt{|z|^2 + |v|^2}$, we get for $n \in \mathbb{N}$, $m \in N$ that

$$\begin{aligned} d(z_n, z_m) &\leq \frac{\sqrt{2}\sqrt{|z_n|^2 + |z_m|^2}}{\sqrt{(1 + |z_n|^2)(1 + |z_m|^2)}} = \\ &= \frac{\sqrt{2}\sqrt{\left(\frac{1}{|z_m|}\right)^2 + \left(\frac{1}{|z_n|}\right)^2}}{\sqrt{\left(\left(\frac{1}{|z_n|}\right)^2 + 1\right)\left(\left(\frac{1}{|z_m|}\right)^2 + 1\right)}} \leq \\ &\leq \sqrt{2}\sqrt{\left(\frac{1}{|z_m|}\right)^2 + \left(\frac{1}{|z_n|}\right)^2} \end{aligned}$$

Since for any $\epsilon > 0$ there is N such that $k > N$ implies $|z_n| > 2/\epsilon$, for $n > N$ and $m > N$ we have

$$d(z_n, z_m) < \sqrt{2}\sqrt{2(\epsilon/2)^2} = \epsilon. \quad (2.24)$$

Since

$$d(z_n, \infty) = \frac{2}{\sqrt{1 + |z_n|^2}} \quad (2.25)$$

of course if $|z_n| \rightarrow +\infty$ then $d(z_n, \infty) \rightarrow 0$, or $z_n \rightarrow \infty$. So z_n surely is convergent in \mathbb{C}_∞ .

2.3.5 Exercise

Let x_n be a convergent sequence in any metric space (X, d) , and $\lim x_n = x$. This means that for every $\epsilon > 0$ there is $N \in \mathbb{N}$ such that $n \geq N$ implies $d(x_n, x) < \epsilon/2$. Then for $n \geq N$ and $m \geq N$ we have $d(x_n, x_m) \leq d(x_n, x) + d(x_m, x) = \epsilon$.

2.3.6 Exercise

Any open proper subset of \mathbb{R}^n , for example $B(O, r)$ with $r > 0$, or the half-space $\{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 > 0\}$. Also (\mathbb{C}, d) where d is the metric on \mathbb{C} .

2.3.7 Exercise

Take

$$d(x, y) = \frac{2|x - y|}{\sqrt{x^2 + 1}\sqrt{y^2 + 1}}. \quad (2.26)$$

This amounts to project $X \in S^1 - \{(0, 1)\}$, where

$$S^1 = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1\}, \quad (2.27)$$

onto the x_1 axis, and take as distance between two points on that axis the Euclidean distance between the corresponding points on S^1 . Since $d(x, y) \leq 2|x - y|$, it is obvious that $|x - y| \rightarrow 0$ implies $d(x, y) \rightarrow 0$.

To show the other implication, this time without using the point ∞ , we start proving the inequality

$$\frac{|x - y|}{\sqrt{x^2 + 1}\sqrt{y^2 + 1}} \geq \left| \frac{1}{\sqrt{x^2 + 1}} - \frac{1}{\sqrt{y^2 + 1}} \right| \quad (2.28)$$

that holds for every $x \in \mathbb{R}$ and $y \in \mathbb{R}$; if $x = -y$ the inequality becomes

$$\frac{|x|}{\sqrt{x^2 + 1}} \geq 0 \quad (2.29)$$

which is true; if $x \neq -y$

$$\begin{aligned} |x - y| &= \frac{|x - y||x + y|}{|x + y|} = \frac{|x^2 - y^2|}{|x + y|} \geq \frac{|x^2 - y^2|}{|x| + |y|} \geq \\ &\geq \frac{|x^2 - y^2|}{\sqrt{x^2 + 1} + \sqrt{y^2 + 1}} = \\ &= \frac{|\sqrt{x^2 + 1} - \sqrt{y^2 + 1}| |\sqrt{x^2 + 1} + \sqrt{y^2 + 1}|}{|\sqrt{x^2 + 1} + \sqrt{y^2 + 1}|} = \\ &= |\sqrt{x^2 + 1} - \sqrt{y^2 + 1}| \end{aligned}$$

whence

$$\frac{|x - y|}{\sqrt{x^2 + 1}\sqrt{y^2 + 1}} \geq \frac{|\sqrt{x^2 + 1} - \sqrt{y^2 + 1}|}{\sqrt{x^2 + 1}\sqrt{y^2 + 1}} = \left| \frac{1}{\sqrt{x^2 + 1}} - \frac{1}{\sqrt{y^2 + 1}} \right|. \quad (2.30)$$

So if $d(x_n, x) \rightarrow 0$ we have

$$\left| \frac{1}{\sqrt{x_n^2 + 1}} - \frac{1}{\sqrt{x^2 + 1}} \right| \leq \frac{|x_n - x|}{\sqrt{x_n^2 + 1}\sqrt{x^2 + 1}} = \frac{1}{2}d(x_n, x) \quad (2.31)$$

which yields $\sqrt{x_n^2 + 1} \rightarrow \sqrt{x^2 + 1}$ and

$$|x_n - x| = \frac{1}{2}\sqrt{x_n^2 + 1}\sqrt{x^2 + 1}d(x_n, x) \rightarrow 0. \quad (2.32)$$

To show that x_n is a Cauchy sequence if $|x_n| \rightarrow 0$, we use once again the inequality

$$d(x_n, x_m) \leq \sqrt{2} \sqrt{\left(\frac{1}{|x_m|} \right)^2 + \left(\frac{1}{|x_n|} \right)^2}. \quad (2.33)$$

2.3.8 Exercise

Take $\epsilon > 0$. Suppose $\lim x_{n_k} = x$, then there is an $N_1 \in \mathbb{N}$ such that $k \geq N_1$ implies $d(x_{n_k}, x) < \frac{\epsilon}{2}$. Since x_n is a Cauchy sequence, there is an $N_2 \in \mathbb{N}$ such that $n \geq N_2$ and $m \geq N_2$ implies $d(x_n, x_m) < \frac{\epsilon}{2}$. Also, there is an $N_3 \in \mathbb{N}$ such that $k \geq N_3$ implies $n_k \geq N_2$. If $N = \max \{N_1, N_3\}$, then $k \geq N$ implies

$$d(x_n, x) \leq d(x_n, x_{n_k}) + d(x_{n_k}, x) < d(x_n, x_{n_k}) + \frac{\epsilon}{2} \quad (2.34)$$

for every $n \in \mathbb{N}$, and with $n_k \geq N_2$, so if $n \geq N_2$ we have $d(x_n, x) < \epsilon$.

2.4 Compactness

2.4.1 Exercise

We need to prove that if for any collection \mathcal{F} of closed subset of K with the finite intersection property results

$$\bigcap_{C \in \mathcal{F}} C \neq \emptyset \quad (2.35)$$

then K is compact. Suppose there are open subsets A_i of X such that

$$K \subseteq \bigcup_{i \in I} A_i \quad (2.36)$$

and that for any finite subset J of I results

$$K \not\subseteq \bigcup_{j \in J} A_j; \quad (2.37)$$

then for any finite subset J of I there is $x \in K$ such that

$$x \notin \bigcup_{j \in J} A_j \quad (2.38)$$

which implies that for every $j \in J$ $x \in K - A_j$; the sets $K - A_j = K \cap (X - A_j)$ are closed in K , so what we have just proved is that the collection $K - A_j \mid j \in J$ has the finite intersection property; by hypothesis, there is a y such that

$$y \in \bigcap_{j \in J} K - A_j = K - \bigcup_{j \in J} A_j \quad (2.39)$$

and this is a contradiction.

2.4.2 Exercise

Since $p \in R$ and $q \in R$ it is obvious that $\text{diam } R \geq d(p, q)$. If $x \in R$ and $y \in R$, then for $i = 1, \dots, n$ we have $p_i \leq x_i \leq q_i$ and $p_i \leq y_i \leq q_i$ whence $|y_i - x_i| \leq q_i - p_i$ for $i = 1, \dots, n$ and

$$d(x, y) = \sqrt{\sum_{i=1}^n (y_i - x_i)^2} \leq \sqrt{\sum_{i=1}^n (q_i - p_i)^2} d(p, q) \quad (2.40)$$

so $\text{diam } R \leq d(p, q)$.

2.4.3 Exercise

Choose $m \in \mathbb{N}$ such that $d(a, b)/m < \epsilon$ and take the points

$$x^{(k_1, \dots, k_n)} = \left(a_1 + \frac{b_1 - a_1}{m} k_1, \dots, a_n + \frac{b_n - a_n}{m} k_n \right), \quad 0 \leq k_1, \dots, k_n \leq m. \quad (2.41)$$

Define the m^n rectangles

$$R^{(k_1, \dots, k_n)} = \times_{i=1}^n [x_i^{(k_1, \dots, k_n)}, x_i^{(k_1+1, \dots, k_n+1)}], \quad 0 \leq k_1, \dots, k_n \leq m-1. \quad (2.42)$$

These rectangles are all subsets of F , and

$$\begin{aligned} \text{diam } R^{(k_1, \dots, k_n)} &= d(x_i^{(k_1, \dots, k_n)}, x_i^{(k_1+1, \dots, k_n+1)}) = \\ &= \sqrt{\sum_{i=1}^n (x_i^{(k_1+1, \dots, k_n+1)} - x_i^{(k_1, \dots, k_n)})^2} = \\ &= \sqrt{\sum_{i=1}^n \frac{(b_i - a_i)^2}{m^2}} = \frac{d(a, b)}{m} < \epsilon. \end{aligned}$$

Furthermore,

$$R = \bigcup_{(k_1, \dots, k_n) = (0, \dots, 0)}^{(m-1, \dots, m-1)} R^{(k_1, \dots, k_n)}. \quad (2.43)$$

In fact, if $x \in R^{(k_1, \dots, k_n)}$ then, since $0 \leq k_i \leq m-1$, for $1 \leq i \leq n$ we have

$$a_i \leq a_i + \frac{b_i - a_i}{m} k_i \leq x_i \leq a_i + \frac{b_i - a_i}{m} (k_i + 1) \leq b_i; \quad (2.44)$$

if $x \in R$, then $a_i \leq x_i \leq b_i$ for $0 \leq i \leq n$, so there surely are k_i for $0 \leq i \leq n$ such that

$$a_i + \frac{b_i - a_i}{m} k_i \leq x_i \leq a_i + \frac{b_i - a_i}{m} (k_i + 1). \quad (2.45)$$

Eventually, if A is a set, $x \in A$ and $\text{diam } A = r$ then $A \subseteq B(x, r)$, since for every $y \in A$ we have $d(x, y) \leq r$.

2.4.4 Exercise

If F is union of a finite number of compact set, say

$$F = \bigcup_{i=1}^n F_i \quad (2.46)$$

and A_j , $j \in J$ is a collection of open sets such that

$$F \subseteq \bigcup_{j \in J} A_j \quad (2.47)$$

then also

$$F_i \subseteq \bigcup_{j \in J} A_j \quad i = 1, \dots, n \quad (2.48)$$

holds, so for each $i = \dots, n$ there is a finite subset \bar{J}_i of J such that

$$F_i \subseteq \bigcup_{j \in \bar{J}_i} A_j \quad i = 1, \dots, n; \quad (2.49)$$

the set $\bar{J} = \bigcup_{i=1}^n \bar{J}_i$ is also finite, and

$$F \subseteq \bigcup_{j \in \bar{J}} A_j. \quad (2.50)$$

2.4.5 Exercise

First, we observe that for every $x, y, h \in X$ we have $d(x, y) = d(x + h, y + h)$, since

$$\begin{aligned} d(x, y) &= \sup_{n \in \mathbb{N}} |y_n - x_n| = \sup_{n \in \mathbb{N}} |(y_n + h_n) - (x_n + h_n)| = \\ &= \sup_{n \in \mathbb{N}} |(y + h)_n - (x + h)_n| = d(x + h, y + h). \end{aligned}$$

Then, that

$$\bar{B}(x, \epsilon) \subseteq \bigcup_{k=1}^n B(x_k, \delta) \quad (2.51)$$

if and only if

$$\bar{B}(0, \epsilon) \subseteq \bigcup_{k=1}^n B(x_k - x, \delta). \quad (2.52)$$

Indeed suppose the latter inclusion holds. Then $y \in \bar{B}(x, \epsilon) \Rightarrow d(x, y) \leq \epsilon \Rightarrow d(0, y - x) \leq \epsilon \Rightarrow y - x \in \bar{B}(0, \epsilon)$ so

$$y - x \in \bigcup_{k=1}^n B(x_k - x, \delta) \quad (2.53)$$

and there is k such that $d(x_k - x, y - x) = d(x_k, y) < \delta$ whence $y \in B(x_k, \delta)$ and

$$y \in \bigcup_{k=1}^n B(x_k, \delta) \quad (2.54)$$

and the former inclusion also holds. The same to prove that the former inclusion implies the latter one.

So we have proved that for every $x \in X$ $\bar{B}(x, \epsilon)$ is totally bounded if and only if $\bar{B}(0, \epsilon)$ is totally bounded.

Now we prove that X is complete. Take $x^{(k)}$ in X : that is, $x^{(k)}$ is a sequence, whose elements are sequences of complex numbers; suppose $x^{(k)}$ is Cauchy, that is, for every $\delta > 0$ there is $N \in \mathbb{N}$ such that $h, l \geq N$ implies $d(x^{(h)}, x^{(l)}) = \sup_{n \in \mathbb{N}} |x_n^{(h)} - x_n^{(l)}| < \delta$. This means that for every $n \in \mathbb{N}$ the sequence in \mathbb{C} : $k \mapsto x_n^{(k)}$ is Cauchy, and, since \mathbb{C} is complete, there is a complex number x_n such that

$$\lim_{k \rightarrow +\infty} x_n^{(k)} = x_n. \quad (2.55)$$

Now we show that $x^{(k)}$ converges to x in X : again since $x^{(k)}$ is Cauchy, for every $\delta > 0$ there is $N \in \mathbb{N}$ such that $h, l \geq N$ implies $d(x^{(h)}, x^{(l)}) < \delta$, in particular, for every $h \geq N$ and for every $n \in \mathbb{N}$

$$\lim_{l \rightarrow +\infty} |x_n^{(h)} - x_n^{(l)}| = |x_n^{(h)} - x_n| < \delta \quad (2.56)$$

which shows that for every $h \geq N$

$$d(x_n^{(h)}, x_n) = \sup_{n \in \mathbb{N}} |x_n^{(h)} - x_n| < \delta. \quad (2.57)$$

Since we proved that X is complete and $\bar{B}(0, \epsilon)$ is closed in X , $\bar{B}(0, \epsilon)$ is also complete.

Now define the sequence $x^{(k)}$ as:

$$x_n^{(k)} = \begin{cases} \epsilon & \text{if } n = k \\ 0 & \text{if } n \neq k \end{cases}. \quad (2.58)$$

Clearly for every $k \in \mathbb{N}$ $x^{(k)} \in \bar{B}(0, \epsilon)$ and if $h \neq k$ then $d(x^{(k)}, x^{(h)}) = \epsilon$, so for any point $x \in \bar{B}(0, \epsilon)$ the ball $B(x, \epsilon/2)$ contains at most only one point $x^{(k)}$, and there is no finite number of such balls that contains all $\bar{B}(0, \epsilon)$.

2.4.6 Exercise

Suppose A is a totally bounded subset of a metric space (X, d) and choose $\epsilon > 0$. There are points x_k , $k = 1, \dots, n$ in A such that

$$A \subseteq \bigcup_{k=1}^n B\left(x_k, \frac{\epsilon}{2}\right) \quad (2.59)$$

so

$$\overline{A} \subseteq \bigcup_{k=1}^n \bar{B}\left(x_k, \frac{\epsilon}{2}\right) \subseteq \bigcup_{k=1}^n B(x_k, \epsilon). \quad (2.60)$$

2.5 Continuity

2.5.1 Exercise

(a) \Rightarrow (b) Take $\epsilon > 0$. Since f is continuous at a , there is δ such that $0 < d(a, x) < \delta \Rightarrow \rho(\alpha, f(x)) < \epsilon$. So $x \in B_X(a, \delta) \Rightarrow f(x) \in B_\Omega(\alpha, \epsilon) \Rightarrow x \in f^{-1}(B_\Omega(\alpha, \epsilon))$.

(b) \Rightarrow (c) Take x_n in X such that $\lim x_n = a$ and $\epsilon > 0$. By hypothesis there is a ball $B_X(a, \delta)$ such that $B_X(a, \delta) \subseteq f^{-1}(B_\Omega(\alpha, \epsilon))$ and there is $N \in \mathbb{N}$ such that $n \geq N \Rightarrow d(a, x_n) < \delta \Rightarrow x_n \in B_X(a, \delta)$ so $n \geq N \Rightarrow f(x_n) \in B_\Omega(\alpha, \epsilon) \Rightarrow \rho(\alpha, f(x_n)) < \epsilon$.

(c) \Rightarrow (a) Suppose f is not continuous at a , that is, there is $\epsilon > 0$ such that for every $\delta > 0$ there is $x \in X$ such that $d(a, x) < \delta$ and $\rho(\alpha, f(x)) \geq \epsilon$. In particular for every $n \in \mathbb{N}$ we can choose $x_n \in X$ such that $d(a, x_n) < 1/n$ and $\rho(\alpha, f(x_n)) \geq \epsilon$. Clearly $\lim x_n = a$ but $f(x_n)$ either has no limit or its limit is not α .

2.5.2 Exercise

If $f, g : X \rightarrow \mathbb{C}$ are uniformly continuous maps for every $\epsilon > 0$ there are $\delta_1 > 0$ and $\delta_2 > 0$ such that for each $x, y \in X$ $d(x, y) < \delta_1 \Rightarrow |f(x) - f(y)| < \epsilon/2$ and $d(x, y) < \delta_2 \Rightarrow |g(x) - g(y)| < \epsilon/2$. Then for each $x, y \in X$ $d(x, y) < \min\{\delta_1, \delta_2\} \Rightarrow |(f+g)(x) - (f+g)(y)| = |(f(x) - f(y)) + (g(x) - g(y))| \leq |f(x) - f(y)| + |g(x) - g(y)| < \epsilon$.

If $f, g : X \rightarrow \mathbb{C}$ are Lipschitz maps there are $M_1 > 0, M_2 > 0$ such that for all $x, y \in X$ $|f(x) - f(y)| \leq M_1 d(x, y)$ and $|g(x) - g(y)| \leq M_2 d(x, y)$, so $|(f+g)(x) - (f+g)(y)| = |(f(x) - f(y)) + (g(x) - g(y))| \leq M_1 d(x, y) + M_2 d(x, y) = (M_1 + M_2) d(x, y)$.

2.5.3 Exercise

If $f, g : X \rightarrow \mathbb{C}$ are bounded uniformly continuous maps then there are $M_1 > 0$ and $M_2 > 0$ such that for every $x \in X$ we have $|f(x)| \leq M_1$ and $|g(x)| \leq M_2$; furthermore for every $\epsilon > 0$ there are $\delta_1 > 0$ and $\delta_2 > 0$ such that for each $x, y \in X$ $d(x, y) < \delta_1 \Rightarrow |f(x) - f(y)| < \epsilon/(M_1 + M_2)$ and $d(x, y) < \delta_2 \Rightarrow |g(x) - g(y)| < \epsilon/(M_1 + M_2)$.

Now if $d(x, y) < \min\{\delta_1, \delta_2\}$

$$\begin{aligned} |(fg)(x) - (fg)(y)| &= |[f(x) - f(y)]g(x) + [g(x) - g(y)]f(y)| \leq \\ &\leq |f(x) - f(y)| |g(x)| + |g(x) - g(y)| |f(y)| \leq \\ &\leq M_1 \frac{\epsilon}{M_1 + M_2} + M_2 \frac{\epsilon}{M_1 + M_2} = \epsilon. \end{aligned}$$

If $f, g : X \rightarrow \mathbb{C}$ are bounded Lipschitz maps there are $M_1 > 0$ and $M_2 > 0$ such that for every $x \in X$ we have $|f(x)| \leq M_1$ and $|g(x)| \leq M_2$; furthermore there are $N_1 > 0, N_2 > 0$ such that for all $x, y \in X$ $|f(x) - f(y)| \leq N_1 d(x, y)$ and $|g(x) - g(y)| \leq N_2 d(x, y)$.

So

$$\begin{aligned} |(fg)(x) - (fg)(y)| &= |[f(x) - f(y)]g(x) + [g(x) - g(y)]f(y)| \leq \\ &\leq N_1 d(x, y) M_1 + N_2 d(x, y) M_2 = \\ &= (N_1 M_1 + N_2 M_2) d(x, y). \end{aligned}$$

2.5.4 Exercise

If $g : X \rightarrow Y$ and $f : Y \rightarrow Z$ are uniformly continuous maps, for every $\epsilon > 0$ there is $\delta > 0$ such that $d_Y(x, y) < \delta \Rightarrow d_Z(f(x), f(y)) < \epsilon$, and there is $\theta > 0$ such that $d_X(u, v) < \theta \Rightarrow d_Y(g(u), g(v)) < \delta$, so $d_X(u, v) < \theta \Rightarrow d_Z(f(g(u)) - f(g(v))) = d_Z((f \circ g)(u) - (f \circ g)(v)) < \epsilon$.

If $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are Lipschitz maps, there are M and N such that $d_Z(f(x), f(y)) \leq N d_Y(x, y)$ for every $x, y \in Y$ and $d_Y(g(u), g(v)) \leq M d_X(u, v)$ for every $u, v \in X$, so

$$\begin{aligned} d_Z((f \circ g)(u), (f \circ g)(v)) &= d_Z(f(g(u)), f(g(v))) \leq \\ &\leq N d_Y(g(u), g(v)) \leq N M d_X(u, v). \end{aligned}$$

2.5.5 Exercise

Take $\epsilon > 0$. Since f is uniformly continuous, there is δ such that $d(x, y) < \delta \Rightarrow d(f(x), f(y)) < \epsilon$; since x_n is a Cauchy sequence there is $\bar{n} \in \mathbb{N}$ such that $n \geq \bar{n}, m \geq \bar{n} \Rightarrow d(x_n, x_m) < \delta \Rightarrow d(f(x_n), f(x_m)) < \epsilon$.

No. Take $X = \mathbb{R} - \{0\}$, $\Omega = \mathbb{R}$, $x_n = 1/n$, $f(x) = 1/x$. Clearly x_n is a Cauchy sequence, since it is convergent in \mathbb{R} , and f is continuous, but $f(x_n) = n$ is not a Cauchy sequence, since it is not convergent.

2.5.6 Exercise

Since D is dense in X , for every $x \in X$ there is a sequence x_n in D such that $\lim x_n = x$. Exercise 5 allows to say that $f(x_n)$ is a Cauchy sequence in Ω , and since Ω is complete, $f(x_n)$ is convergent. Let's show that $\lim x_n = \lim y_n \Rightarrow \lim f(x_n) = \lim f(y_n)$. Say $l = \lim x_n = \lim y_n$, and take $\epsilon > 0$. Since f is uniformly continuous, there is δ such that $d(x, y) < \delta \Rightarrow d(f(x), f(y)) < \epsilon$, and there are $N_1 \in \mathbb{N}$ and $N_2 \in \mathbb{N}$ such that $n \geq N_1 \Rightarrow d(l, x_n) < \delta/2$ and $m \geq N_2 \Rightarrow d(l, y_m) < \delta/2$. So $k \geq \max\{N_1, N_2\} \Rightarrow d(x_k, y_k) \leq d(l, x_k) + d(l, y_k) = \delta$ and $k \geq \max\{N_1, N_2\} \Rightarrow d(f(x_k), f(y_k)) < \epsilon$, which yields also $d(\lim x_k, \lim y_k) < \epsilon$. Since ϵ is any positive real number, this proves that the two limits are equal.

Now we can define $g : X \rightarrow \Omega$ as $g(x) = \lim f(x_k)$ where x_k is any sequence in D such that $\lim x_k = x$. To see that $g|_D = f$ is easy: if $x \in D$ take $x_k = x$ for all $k \in \mathbb{N}$. We have still to show that g is uniformly continuous. Take $\epsilon > 0$; since f is uniformly continuous there is δ such that $d(u, v) < \delta \Rightarrow d(f(u), f(v)) < \epsilon$ for any two points $u, v \in D$; take $x, y \in X$ such that $d(x, y) < \delta/3$, and let x_k, y_k be sequences in D such that $\lim x_k = x$, $\lim y_k = y$, so there are $N_1 \in \mathbb{N}$ and $N_2 \in \mathbb{N}$ such that $n \geq N_1 \Rightarrow d(x, x_n) < \delta/3$ and $m \geq N_2 \Rightarrow d(y, y_m) < \delta/3$; then if $N = \max\{N_1, N_2\}$ we have $k \geq N \Rightarrow d(x_k, y_k) \leq d(x, x_k) + d(x, y) + d(y, y_k) < \delta$. So for $k \geq N$ we have also $d(g(x), g(y)) \leq d(g(x), f(x_k)) + d(f(x_k), f(y_k)) + d(f(y_k), g(y)) < d(g(x), f(x_k)) + \epsilon + d(g(y), f(y_k))$. Since this inequality holds for every $k \geq N$, eventually we get, for every $x, y \in X$ such that $d(x, y) < \delta/3$, $d(g(x), g(y)) < \lim[d(g(x), f(x_k)) + \epsilon + d(g(y), f(y_k))] = \epsilon$.

2.5.7 Exercise

Of course it is enough to prove the statement in the case that the polygon P is made of only one segment. Let $L = d(P, \mathbb{C} - G)$. Since $\mathbb{C} - G$ is closed, P is compact by Theorem 4.10, and $\mathbb{C} - G$ and P are disjoint, then $L > 0$. Take $n \in \mathbb{N}$ such that $r = d(a, b)/n < L/2$, put $x_0 = a, x_n = b$ and choose $n - 1$ points x_i $1 \leq i \leq n - 1$ on P such that $d(x_i, x_{i+1}) = r, 0 \leq i \leq n - 1$. We have $B(x_i, L) \subseteq G, 0 \leq i \leq n - 1$ and since $r < L$ also $x_{i+1} \in B(x_i, L), 0 \leq i \leq n - 1$. Now it is obvious that x_i and x_{i+1} can be joined by a polygon which is composed of one line segment parallel to the real axis and of one line segment parallel to the imaginary axis, so a and b can be joined by a polygon which is composed of n line segments parallel to the real axis and of n line segments parallel to the imaginary axis.

N.B. What has Theorem 5.15 got to do with this proof?

2.5.8 Exercise

For every $\epsilon > 0$ we have

$$X \subseteq \bigcup_{\omega \in \Omega} f^{-1} \left(B_{\Omega} \left(\omega, \frac{\epsilon}{2} \right) \right); \quad (2.61)$$

since this is an open cover of X , which is compact and so sequentially compact by Theorem 4.9, Lebesgue's Covering Lemma says that there is a δ such that for every $x \in X$ we have $B_X(x, \delta) \subseteq f^{-1}(B_{\Omega}(\omega, \epsilon/2))$ for some $\omega \in \Omega$. Now if $x, y \in X$ are such that $d_X(x, y) < \delta$, surely $y \in B_X(x, \delta)$, so both $x \in f^{-1}(B_{\Omega}(\omega, \epsilon/2))$ and $y \in f^{-1}(B_{\Omega}(\omega, \epsilon/2))$ hold for some $\omega \in \Omega$, which implies both $f(x) \in B_{\Omega}(\omega, \epsilon/2)$ and $f(y) \in B_{\Omega}(\omega, \epsilon/2)$, that is, $d_{\Omega}(f(x), f(y)) < \epsilon$.

2.5.9 Exercise

If X is disconnected, then $X = Y \cup Z$ where Y and Z are open, disjoint and not empty; clearly, they are also closed. By Proposition 4.3 Y is compact (also Z , but we don't need it). There are two points $y \in Y$ and $z \in Z$. Now take points x_0, \dots, x_n with $x_0 = y$ and $x_n = z$. Surely there is \bar{k} such that $x_{\bar{k}}$ is the last among these points which belongs to Y , that is

$$\bar{k} = \max \{k \in \mathbb{N} \mid x_k \in Y\} \quad (2.62)$$

so $x_k \in Z$ if $k > \bar{k}$. By Theorem 5.17 $r = d(Y, Z) > 0$, then $d(x_{\bar{k}}, x_{\bar{k}+1}) \geq r$. Conclusion: no matter how the points x_k are chosen, there are always two of them whose distance is not less than r , contradicting the hypothesis.

2.5.10 Exercise

If $x \in X$ there is a sequence x_n in D such that $\lim x_n = x$. So $\lim f(x_n) = f(x)$ and $\lim g(x_n) = g(x)$, since f and g are continuous. But for every $n \in \mathbb{N}$ we have $f(x_n) = g(x_n)$, since $x_n \in D$, so $f(x) = g(x)$.

That the function whose existence is proved in Exercise 6 is unique is an immediate consequence.

2.6 Uniform convergence

2.6.1 Exercise

Exactly as in the proof of Theorem 6.1. Take $\epsilon > 0$, since $f = \lim f_n$, there is n such that $\rho(f(x), f_n(x)) < \epsilon/3$ for all $x \in X$; since f_n is uniformly continuous, there is δ such that $d(x, y) < \delta$ implies $\rho(f_n(x), f_n(y)) < \epsilon/3$, so if $d(x, y) < \delta$ we have $\rho(f(x), f(y)) \leq \rho(f(x), f_n(x)) + \rho(f_n(x), f_n(y)) + \rho(f(y), f_n(y)) < \epsilon$.

If there are M_n such that $\rho(f_n(x), f_n(y)) \leq M_n d(x, y)$ for every $x, y \in X$, $\sup_{n \in \mathbb{N}} M_n = M$ and $f = \lim f_n$, then for every $x, y \in X$ and for every $n \in \mathbb{N}$

$$\begin{aligned} \rho(f(x), f(y)) &\leq \rho(f(x), f_n(x)) + \rho(f_n(x), f_n(y)) + \rho(f(y), f_n(y)) \leq \\ &\leq \rho(f(x), f_n(x)) + \rho(f(y), f_n(y)) + M d(x, y) \end{aligned}$$

so also

$$\rho(f(x), f(y)) \leq \lim [\rho(f(x), f_n(x)) + \rho(f(y), f_n(y)) + M d(x, y)] = M d(x, y). \quad (2.63)$$

Take $X = [0, 1]$, $\Omega = \mathbb{R}$, both with the Euclidean distance, and $f_n(x) = \sqrt{x + 1/n}$. Each f_n is Lipschitz, since for $x \in [0, 1]$

$$|f_n(x) - f_n(y)| \leq \frac{\sqrt{n}}{2} |x - y| \quad (2.64)$$

(note that $\sup M_n = +\infty$), $\lim f_n(x) = \sqrt{x}$ and the convergence is uniform since for $x \in [0, 1]$

$$\left| \sqrt{x + \frac{1}{n}} - \sqrt{x} \right| \leq \sqrt{\frac{1}{n}} \quad (2.65)$$

but the limit f is not Lipschitz; for $f(x) - f(0) = \sqrt{x}$, and if for an M we had $\sqrt{x} \leq Mx$ then $1/\sqrt{x} \leq M$ for every $x \in [0, 1]$, which clearly is false.

Chapter 3

Elementary Properties and Examples of Analytic Functions

3.1 Power series

3.1.1 Exercise

Using the Identity A.1 we have

$$\begin{aligned} \sum_{n=0}^k |c_n| &= \sum_{n=0}^k \left| \sum_{h=0}^n a_h b_{n-h} \right| \leq \sum_{n=0}^k \sum_{h=0}^n |a_h| |b_{n-h}| = \sum_{n=0}^k \sum_{h=0}^{k-n} |a_n| |b_h| \leq \\ &\leq \sum_{n=0}^k \sum_{h=0}^k |a_n| |b_h| = \sum_{n=0}^k |a_n| \sum_{h=0}^k |b_h| \end{aligned}$$

and this shows that $\sum c_n$ is absolutely convergent.

Now, let $a_n = x_n + iy_n$ and $b_n = u_n + iv_n$. Then the series $\sum x_n$, $\sum y_n$, $\sum u_n$, $\sum v_n$ are all absolutely convergent, since for any complex number z we have $\Re z \leq |z|$ and $\Im z \leq |z|$. Let

$$\sum_{k=0}^{+\infty} x_k = X, \quad \sum_{k=0}^{+\infty} y_k = Y, \quad \sum_{k=0}^{+\infty} u_k = U, \quad \sum_{k=0}^{+\infty} v_k = V. \quad (3.1)$$

Now

$$\begin{aligned} c_k &= \sum_{h=0}^k a_h b_{k-h} = \sum_{h=0}^k (x_h + iy_h)(u_{k-h} + iv_{k-h}) = \\ &= \left(\sum_{h=0}^k x_h u_{k-h} - \sum_{h=0}^k y_h v_{k-h} \right) + i \left(\sum_{h=0}^k y_h u_{k-h} + \sum_{h=0}^k x_h v_{k-h} \right) \end{aligned}$$

and

$$\begin{aligned} \sum_{k=0}^n c_k &= \left(\sum_{k=0}^n \sum_{h=0}^k x_h u_{k-h} - \sum_{k=0}^n \sum_{h=0}^k y_h v_{k-h} \right) + \\ &\quad + i \left(\sum_{k=0}^n \sum_{h=0}^k y_h u_{k-h} + \sum_{k=0}^n \sum_{h=0}^k x_h v_{k-h} \right). \end{aligned}$$

As it is known from the real case, the four series above converge to the corresponding products, that is

$$\begin{aligned} \sum_{k=0}^{+\infty} c_k &= (XU - YV) + i(YU - XV) = (X + iY)(U + iV) = \\ &= \left(\sum_{k=0}^{+\infty} a_k \right) \left(\sum_{k=0}^{+\infty} b_k \right). \end{aligned}$$

3.1.2 Exercise

What is left to prove follows from Proposition 1.5 and the corresponding statement for the sum of two absolutely convergent series.

3.1.3 Exercise

Straightforwardly:

$$\begin{aligned}\limsup(a_n + b_n) &= \limsup_{n \geq k} \{a_n + b_n\} \leq \lim \left(\sup_{n \geq k} \{a_n\} + \sup_{n \geq k} \{b_n\} \right) = \\ &= \limsup a_n + \limsup b_n.\end{aligned}$$

The same for \liminf .

3.1.4 Exercise

Even straightforwardlier: for every $k \in \mathbb{N}$ it is obvious that

$$\inf_{n \geq k} \{a_n\} \leq \sup_{n \geq k} \{a_n\} \quad (3.2)$$

whence

$$\liminf_{n \geq k} \{a_n\} \leq \limsup_{n \geq k} \{a_n\}. \quad (3.3)$$

3.1.5 Exercise

Let's show that $\liminf a_n \geq a$. If $l_i = \liminf a_n < a$, then there would be N such that

$$\inf_{n \geq N} \{a_n\} < \frac{a + l_i}{2} \quad (3.4)$$

which implies that for every $k \geq N$ there is $\bar{k} \geq k$ such that

$$a_{\bar{k}} < \frac{a + l_i}{2} < a \quad (3.5)$$

so it couldn't be $a = \lim a_n$.

Analogously $\limsup a_n \leq a$, so $\liminf a_n \geq \limsup a_n$. Since the opposite inequality always holds, this proves that $\liminf a_n = \limsup a_n$.

3.1.6 Exercise

(a) $\lim \sqrt[n]{|a^n|} = |a|$, so $R = \frac{1}{|a|}$.

(b) $\lim \sqrt[n]{|a^{n^2}|} = \lim |a|^n$ so

- $R = +\infty$ if $|a| < 1$
- $R = 0$ if $|a| > 1$
- $R = 1$ if $|a| = 1$

(c) $\lim \sqrt[n]{|k^n|} = |k|$ so $R = \frac{1}{|k|}$.

(d) The coefficients are: $a_k = \begin{cases} 1 & \text{if } k = n! \text{ for some } n \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$. So $\sqrt[k]{|a_k|}$ has a subsequence which takes always the value 1 and a subsequence which takes always the value 0. Hence $\limsup \sqrt[k]{|a_k|} = 1$ and $R = 1$.

3.1.7 Exercise

The coefficients of this series are:

$$a_k = \begin{cases} \frac{(-1)^n}{n} & \text{if } k = n(n+1) \text{ for some } n \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases} \quad (3.6)$$

and accordingly

$$\sqrt[k]{|a_k|} = \begin{cases} \sqrt[n]{\frac{1}{n^{n(n+1)}}} & \text{if } k = n(n+1) \text{ for some } n \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases} \quad (3.7)$$

Then for any $h \in \mathbb{N}$, $h \geq 2$

$$\sup_{k \geq h} \left\{ \sqrt[k]{|a_k|} \right\} = \frac{1}{n^{\frac{1}{n(n+1)}}} \quad \text{if } n(n+1) \leq h < (n+1)(n+2) \quad (3.8)$$

since for $n \geq 2$ the sequence $n^{\frac{1}{n(n+1)}}$ is decreasing, as can be easily seen deriving the function $x^{\frac{1}{x(x+1)}}$.
So $\limsup \sqrt[k]{|a_k|} = 1$.

If $z = 1$, or $z = -1$, being $n(n+1)$ always even, the series becomes

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n} \quad (3.9)$$

which is convergent by Leibnitz criterion.

If $z = i$, the series becomes

$$1 - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \dots = \sum_{n=0}^{+\infty} (-1)^n \frac{4n+1}{2n(2n+1)} \quad (3.10)$$

which again is convergent by Leibnitz criterion.

3.2 Analytic functions

3.2.1 Exercise

Writing explicitly the real and immaginary parts of the function:

$$f(x+iy) = u(x, y) + iv(x, y) \quad (3.11)$$

where

$$\begin{aligned} u(x, y) &= x^2 + y^2 \\ v(x, y) &= 0 \end{aligned}$$

we get

$$\begin{aligned} u_x(x, y) &= 2x \\ u_y(x, y) &= 2y \end{aligned}$$

and

$$\begin{aligned} v_x(x, y) &= 0 \\ v_y(x, y) &= 0 \end{aligned}$$

so the Cauchy-Riemann equations can be satisfied only for $(x, y) = (0, 0)$.

3.2.2 Exercise

Suppose $a > 0$ and $b > 0$. Since $\lim b_n = b$ and $\limsup a_n = a$, then $\forall \eta > 0 \exists n_1 : n \geq n_1 \Rightarrow b_n < b + \eta$ and $\forall \eta > 0 \exists n_2 : n \geq n_2 \Rightarrow a_n < a + \eta$.

Now

$$a_n b_n = b_n(a_n - a) + a(b_n - b) + ab. \quad (3.12)$$

Since $b > 0$, there is an $n_3 \in \mathbb{N}$ such that $n \geq n_3 \Rightarrow b_n > 0$, so for $n \geq \max\{n_1, n_2, n_3\}$ we have

$$a_n b_n \leq b_n \eta + a \eta + ab. \quad (3.13)$$

Furthermore, there is $M > 0$ such that $b_n \leq M$ for every n , so

$$a_n b_n \leq (M + a) \eta + ab. \quad (3.14)$$

If $\epsilon > 0$, take

$$\eta = \frac{\epsilon}{M + a} \quad (3.15)$$

and for $n \geq \max\{n_1, n_2, n_3\}$ we have

$$a_n b_n \leq ab + \epsilon. \quad (3.16)$$

Since $\lim b_n = b$ and $\limsup a_n = a$, then $\forall \theta > 0 \exists n_1 : n \geq n_1 \Rightarrow b_n > b - \theta$ and $\forall \theta > 0, \forall \bar{n} \in \mathbb{N} \exists n_2 : n_2 > \bar{n} \wedge a_{n_2} > a - \theta$, so for $\bar{n} \geq \max\{n_1, n_3\}$ there is $n_2 > \bar{n}$ such that

$$a_{n_2} b_{n_2} \geq -b_n \eta - a \eta + ab. \quad (3.17)$$

Furthermore, there is n_4 such that $n \geq n_4 \Rightarrow b_n > b/2$; so now we have that for $\bar{n} \geq \max\{n_1, n_3, n_4\}$ there is $n_2 > \bar{n}$ such that

$$a_{n_2} b_{n_2} \geq -\left(\frac{b}{2} + a\right) \eta + ab. \quad (3.18)$$

If $\epsilon > 0$, take

$$\eta = \frac{\epsilon}{b/2 + a} \quad (3.19)$$

and for $\bar{n} \geq \max\{n_1, n_3, n_4\}$ there is $n_2 > \bar{n}$ such that

$$a_{n_2} b_{n_2} \geq ab - \epsilon. \quad (3.20)$$

Of course in the same way it can be proved that, under the same hypotheses, also $\liminf(a_n b_n) = \lim b_n \liminf a_n$ holds.

Now suppose $a < 0$ and $b > 0$. Then

$$-a = \liminf(-a_n) > 0 \quad (3.21)$$

and for what we just proved,

$$\limsup(a_n b_n) = -\liminf(-a_n b_n) = ab. \quad (3.22)$$

If $b < 0$, then $-b = \lim(-b_n) > 0$ and

$$\begin{aligned} \limsup(a_n b_n) &= -\liminf(-a_n b_n) = -\liminf(a_n(-b_n)) = \\ &= -\liminf a_n \lim(-b_n) = -b \liminf a_n \end{aligned}$$

supposing both $\liminf a_n$ and $\limsup a_n$ are finite.

3.2.3 Exercise

What's that supposed to mean? That is, starting from where? After all, it's known from real analysis, isn't it?

3.2.4 Exercise

Since

$$\cos z = \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n}}{(2n)!} \quad (3.23)$$

then, by Proposition 2.5

$$(\cos z)' = \sum_{n=1}^{+\infty} (-1)^n 2n \frac{z^{2n-1}}{(2n)!} = \sum_{n=1}^{+\infty} (-1)^n \frac{z^{2n-1}}{(2n-1)!} = -\sin z. \quad (3.24)$$

Since

$$\sin z = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{z^{2n-1}}{(2n-1)!} \quad (3.25)$$

then, by Proposition 2.5

$$\begin{aligned} (\sin z)' &= \sum_{n=1}^{+\infty} (-1)^{n+1} (2n-1) \frac{z^{2n-2}}{(2n-1)!} = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{z^{2n-2}}{(2n-2)!} = \\ &= \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n}}{(2n)!}. \end{aligned}$$

3.2.5 Exercise

We have

$$\begin{aligned} e^{iz} &= \sum_{n=0}^{+\infty} \frac{(iz)^n}{n!} = \sum_{n=0}^{+\infty} i^n \frac{z^n}{n!} = \sum_{k=0}^{+\infty} i^{2k} \frac{z^{2k}}{2k!} + \sum_{k=0}^{+\infty} i^{2k+1} \frac{z^{2k+1}}{(2k+1)!} = \\ &= \sum_{k=0}^{+\infty} (-1)^k \frac{z^{2k}}{2k!} + i \sum_{k=0}^{+\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} = \cos z + i \sin z, \end{aligned}$$

$$\begin{aligned} e^{-iz} &= \sum_{n=0}^{+\infty} \frac{(-iz)^n}{n!} = \sum_{n=0}^{+\infty} (-i)^n \frac{z^n}{n!} = \\ &= \sum_{k=0}^{+\infty} (-i)^{2k} \frac{z^{2k}}{2k!} + \sum_{k=0}^{+\infty} (-i)^{2k+1} \frac{z^{2k+1}}{(2k+1)!} = \\ &= \sum_{k=0}^{+\infty} (-1)^k \frac{z^{2k}}{2k!} - i \sum_{k=0}^{+\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} = \cos z - i \sin z. \end{aligned}$$

3.2.6 Exercise

1. If $e^{x+iy} = e^x(\cos y + i \sin y) = i$, then it must be $e^x \cos y = 0$, $e^x \sin y = 1$, and $e^x = |i| = 1$, so $x = 0$; then $\cos y = 0$ and $\sin y = 1$, so $y = \frac{\pi}{2} + 2k\pi$. Hence

$$\{z \in \mathbb{C} \mid e^z = i\} = \left\{ i \left(\frac{\pi}{2} + 2k\pi \right) \mid k \in \mathbb{Z} \right\}. \quad (3.26)$$

2. If $e^{x+iy} = e^x(\cos y + i \sin y) = -1$ we have again $x = 0$, and $\cos y = -1$, $\sin y = 0$, hence

$$\{z \in \mathbb{C} \mid e^z = -1\} = \{i(\pi + 2k\pi) \mid k \in \mathbb{Z}\}. \quad (3.27)$$

3. Now

$$\{z \in \mathbb{C} \mid e^z = -i\} = \left\{ i \left(\frac{3\pi}{2} + 2k\pi \right) \mid k \in \mathbb{Z} \right\}. \quad (3.28)$$

4. Finally

$$\{z \in \mathbb{C} \mid e^z = 0\} = \{i(2k\pi) \mid k \in \mathbb{Z}\}. \quad (3.29)$$

3.2.7 Exercise

On the one hand

$$\cos(z+w) = \frac{e^{iz+w} + e^{-iz-w}}{2} = \frac{e^{iz}e^{iw} + e^{-iz}e^{-iw}}{2} \quad (3.30)$$

on the other hand

$$\begin{aligned} \cos z \cos w &= \frac{e^{iz} + e^{-iz}}{2} \frac{e^{iw} + e^{-iw}}{2} = \\ &= \frac{e^{iz}e^{iw} + e^{-iz}e^{-iw} + e^{-iz}e^{iw} + e^{iz}e^{-iw}}{4} \\ \sin z \sin w &= \frac{e^{iz} - e^{-iz}}{2i} \frac{e^{iw} - e^{-iw}}{2i} = \\ &= \frac{-e^{iz}e^{iw} - e^{-iz}e^{-iw} + e^{-iz}e^{iw} + e^{iz}e^{-iw}}{4} \end{aligned}$$

so $\cos(z+w) = \cos z \cos w - \sin z \sin w$. In a similar way it is proved that $\sin(z+w) = \sin z \cos w + \cos z \sin w$.

3.2.8 Exercise

Of course

$$\tan z = \frac{\sin z}{\cos z} \quad (3.31)$$

is defined and analytic where $\cos z \neq 0$. Now $\cos z = 0$ means $e^{iz} + e^{-iz} = 0$, that is $e^{2iz} = -1$; by Exercise 6 point 2 that means $2iz = i(\pi + 2k\pi)$, and

$$z = \frac{\pi}{2} + k\pi. \quad (3.32)$$

3.2.9 Exercise

First, observe that if $z_n \rightarrow z$, then $|z_n| \rightarrow |z|$: it follows straight from the inequality $||z_n| - |z|| \leq |z_n - z|$. This yields that $r_n \rightarrow r$.

Now

$$z_n - z = re^{i\theta} \left(\frac{r_n}{r} e^{i(\theta_n - \theta)} - 1 \right) \quad (3.33)$$

and since $z_n - z \rightarrow 0$, and $re^{i\theta} \neq 0$, then we must have $\frac{r_n}{r} e^{i(\theta_n - \theta)} - 1 \rightarrow 0$; but $\frac{r_n}{r} \rightarrow 1$, so $e^{i(\theta_n - \theta)} \rightarrow 1$, which yields $(\theta_n - \theta) \rightarrow 2k\pi$ for some $k \in \mathbb{Z}$. Since by hypothesis $-\pi < \theta < \pi$ and $-\pi < \theta_n < \pi$, the only possibility is $(\theta_n - \theta) \rightarrow 0$, which means $\theta_n \rightarrow \theta$.

3.2.10 Exercise

As in Proof of Proposition 2.20, take $a \in G$, $s \in \mathbb{C}$ such that $s \neq 0$ and $a+s \in G$. Now $g(f(a)) = h(a)$, $g(f(a+s)) = h(a+s)$ and since h is injective and $s \neq 0$, we have $g(f(a+s)) \neq g(f(a))$ which yields $f(a+s) - f(a) \neq 0$. Now

$$\frac{g(f(a+s)) - g(f(a))}{s} = \frac{h(a+s) - h(a)}{s} \quad (3.34)$$

so

$$\frac{g(f(a+s)) - g(f(a))}{f(a+s) - f(a)} \cdot \frac{f(a+s) - f(a)}{s} = \frac{h(a+s) - h(a)}{s}; \quad (3.35)$$

since f is continuous, $f(a+s) \rightarrow f(a)$ as $s \rightarrow 0$, and this gives

$$\lim_{s \rightarrow 0} \frac{g(f(a+s)) - g(f(a))}{f(a+s) - f(a)} = g'(f(a)) \quad (3.36)$$

and since $g'(f(a)) \neq 0$ we finally get that

$$f'(a) = \lim_{s \rightarrow 0} \frac{f(a+s) - f(a)}{s} = \frac{h'(a)}{g'(f(a))}. \quad (3.37)$$

3.2.11 Exercise

Isn't it obvious? If f is a branch of the logarithm, then $e^{f(z)} = z$ for any $z \in G$. So $e^{nf(z)} = (e^{f(z)})^n = z^n$ for any $z \in G$.

3.2.12 Exercise

By definition

$$z^{\frac{1}{2}} = e^{\frac{1}{2} \log z} \quad (3.38)$$

where \log is the principal branch of the logarithm, that is, if

$$G = \mathbb{C} - \{z \in \mathbb{C} \mid \operatorname{Im} z \neq 0 \vee \operatorname{Re} z > 0\} \quad (3.39)$$

then $\log : G \rightarrow \mathbb{C}$, and if $z = re^{i\theta}$ with $-\pi < \theta < \pi$ then $\log(z) = \log(r) + i\theta$. Then

$$z^{\frac{1}{2}} = e^{\frac{1}{2} \log z} = e^{\frac{1}{2}(\log r + i\theta)} = \sqrt{r} \left(\cos\left(\frac{\theta}{2}\right) + i \sin\left(\frac{\theta}{2}\right) \right) \quad (3.40)$$

and now

$$-\frac{\pi}{2} < \frac{\theta}{2} < \frac{\pi}{2} \quad (3.41)$$

so the real part of this complex number is positive.

3.2.13 Exercise

If \log is the principal branch of the logarithm, and

$$f_k(z) = e^{\frac{1}{n} \log z} e^{\frac{2k\pi i}{n}} \quad k = 0, 1, \dots, n-1 \quad z \in G \quad (3.42)$$

then

$$(f_k(z))^n = z \quad (3.43)$$

and the functions f_k are all distinct and analytic on G . On the other hand, if g and h are two any functions that satisfy the same conditions, then

$$F(z) = \frac{g(z)}{h(z)} \quad (3.44)$$

defines an analytic function on G , since $h(z) \neq 0$ on G . Then

$$F(z)^n = \left(\frac{g(z)}{h(z)} \right)^n = \frac{g(z)^n}{h(z)^n} = 1 \quad (3.45)$$

which yields that for any $z \in G$ there is an integer k such that $0 \leq k \leq n-1$ and

$$\frac{g(z)}{h(z)} = e^{\frac{2k\pi i}{n}}. \quad (3.46)$$

But F is continuous, so $\operatorname{Im} F$ is connected, therefore there is one integer k that satisfies the last condition for all $z \in G$, otherwise $\operatorname{Im} F$ would contain at least two distinct isolated points, and would not be connected. In particular, if f is any function satisfying the wanted conditions, then

$$\frac{f(z)}{e^{\frac{1}{n} \log z}} = e^{\frac{2k\pi i}{n}} \quad z \in G \quad (3.47)$$

for some $k = 0, 1, \dots, n-1$, so $f = f_k$.

3.2.14 Exercise

Let

$$f(z) = f(x + iy) = u(x, y) + iv(x, y) \quad (3.48)$$

then by hypothesis $v = 0$ in G . By the Cauchy-Riemann equations

$$u_x = v_y = 0$$

$$u_y = -v_x = 0$$

in G , and since G is connected, it follows that u , and then f , is constant.

3.2.15 Exercise

Of course, if $z \neq 0$

$$\exp\left(\frac{1}{z}\right) = \exp\left(\frac{1}{x+iy}\right) = \exp\left(\frac{x}{x^2+y^2}\right) \exp\left(-i\frac{y}{x^2+y^2}\right). \quad (3.49)$$

The function

$$f(x) = \frac{x}{x^2+y^2} \quad (3.50)$$

takes any real value k on the circle

$$\left(x - \frac{1}{2k}\right)^2 + y^2 - \frac{1}{4k^2} = 0 \quad (3.51)$$

and the function

$$f(x) = \frac{y}{x^2+y^2} \quad (3.52)$$

takes any real value h on the circle

$$\left(y - \frac{1}{2h}\right)^2 + x^2 - \frac{1}{4h^2} = 0. \quad (3.53)$$

All these circles go through $(0,0)$, which means that for any $r > 0$, in the set $\{0 < |z| < r\}$ the function $\exp(1/z)$ can take any possible value $re^{i\theta}$ with $r > 0$. That is, $A = \mathbb{C} - 0$.

3.2.16 Exercise

For instance

$$G = \{z \in \mathbb{C} \mid \operatorname{Im} z \neq 0 \vee \operatorname{Re} z > 1 \vee \operatorname{Re} z < -1\} \quad (3.54)$$

and

$$\begin{aligned} f(z) &= \exp\left(\frac{\log(1-z^2)}{2}\right) \\ g(z) &= \exp\left(\frac{\log(1-z^2)}{2} + \pi i\right). \end{aligned}$$

To see that $f(z)^2 = g(z)^2 = 1 - z^2$ is trivial.

Now what can possibly mean that G is maximal? Maybe that if $H \supseteq G$, $h : H \rightarrow \mathbb{C}$ such that $h(z)^2 = 1 - z^2$ in H and for instance $h|_G = f$, then $H = G$. To prove this, suppose there is $z_0 \in H$ but $z_0 \notin G$. Then $z_0 = (x, 0)$ with either $x > 1$ or $x < -1$. Say $x > 1$. For $-\pi < \theta < \pi$ take

$$h(\theta) = \exp\left(\frac{\log((x^2-1)e^{i\theta}+1)}{2}\right); \quad (3.55)$$

if $\theta \neq 0$ then $h(\theta) \in G$, $h(0) = x$ and h is obviously continuous. Now

$$\begin{aligned} f(h(\theta)) &= \exp\left(\frac{\log(1-h(\theta)^2)}{2}\right) = \exp\left(\frac{\log(-(x^2-1)e^{i\theta})}{2}\right) = \\ &= \exp\left(\frac{\log((x^2-1)e^{i(\theta-\pi)})}{2}\right). \end{aligned}$$

If $0 < \theta < \pi$ then $-\pi < \theta - \pi < 0$ so

$$f(h(\theta)) = \exp\left(\frac{1}{2}(\log(x^2-1) + i(\theta-\pi))\right) \quad (3.56)$$

and

$$\lim_{\theta \rightarrow 0^+} h(\theta) = \exp\left(\frac{1}{2}\log(x^2-1) - \frac{\pi}{2}i\right) = \sqrt{x^2-1} e^{-\frac{\pi}{2}i} = -i\sqrt{x^2-1}. \quad (3.57)$$

If $-\pi < \theta < 0$ then $-2\pi < \theta - \pi < -\pi$ and $0 < \theta + \pi < \pi$ so

$$f(h(\theta)) = \exp\left(\frac{1}{2}(\log(x^2 - 1) + i(\theta + \pi))\right) \quad (3.58)$$

and

$$\lim_{\theta \rightarrow 0^-} h(\theta) = \exp\left(\frac{1}{2}\log(x^2 - 1) + \frac{\pi}{2}i\right) = \sqrt{x^2 - 1}e^{\frac{\pi}{2}i} = i\sqrt{x^2 - 1}. \quad (3.59)$$

What we have shown is that h cannot be continuous in $(x, 0)$ if this point is in H but not in G , so if H is continuous G is maximal. As for analyticity, it follows from \log 's and \exp 's.

3.2.17 Exercise

Is it really an exercise? Well, $G = \{z \in \mathbb{C} \mid \operatorname{Im} z \neq 0 \vee \operatorname{Re} z < 1\}$, $f : G \rightarrow \mathbb{C}$,

$$f(z) = \exp\left(\frac{1}{2}\log(1 - z)\right). \quad (3.60)$$

3.2.18 Exercise

That doesn't seem much true. Say

$$\begin{aligned} f(z) &= \exp(a \log(z)) \\ g(z) &= \exp(b(\log(z) + 2\pi i)) \end{aligned}$$

(by the way, here G needs to be connected) then

$$f(z)g(z) = \exp((a + b)\log(z) + b2\pi i) \quad (3.61)$$

and the latter doesn't look a bit like a branch of z^{a+b} .

For instance, take $a = b = \frac{1}{2}$:

$$f(z)g(z) = \exp\left(\left(\frac{1}{2} + \frac{1}{2}\right)\log(z) + \frac{1}{2}(2\pi i)\right) = ze^{\pi i} = -z \quad (3.62)$$

and there is no reasonable way to consider $-z$ as a branch of $z^{\frac{1}{2} + \frac{1}{2}} = z^1 = z$.

Maybe we need to add the hypothesis that $f(z)$ and $g(z)$ are *the same* branch of z^a and z^b respectively, that is,

$$\begin{aligned} f(z) &= \exp(a \lg(z)) \\ g(z) &= \exp(b \lg(z)) \end{aligned}$$

where \lg is any branch of the logarithm on G . Now (even if G is not connected)

$$f(z)g(z) = \exp((a + b)\lg(z)) \quad (3.63)$$

and so fg is a branch of z^{a+b} . The same for f/g .

As well, let $\log : D \rightarrow \mathbb{C}$ be a branch of logarithm, $a \in \mathbb{C}$, $b \in \mathbb{C}$ and

$$\begin{aligned} f : D &\rightarrow \mathbb{C} \\ z &\mapsto \exp(a \log z) \end{aligned} \quad (3.64)$$

$$\begin{aligned} g : D &\rightarrow \mathbb{C} \\ z &\mapsto \exp(b \log z) \end{aligned} \quad (3.65)$$

so that f and g are branches of z^a and z^b respectively. To get a branch of z^{ab} it would seem fair enough to consider $g \circ f|_{f^{-1}(D)}$, but that is not the case. To see this, let $D = \{z \in \mathbb{C} \mid \operatorname{Re}(z) > 0 \vee \operatorname{Im}(z) \neq 0\}$, $\log : D \rightarrow \mathbb{C}$ be the principal branch of logarithm, $a = 2$, $b = \frac{1}{2}$ and $\bar{z} = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} = \exp(i\frac{3}{4}\pi)$. Remark that if $z \in D$ then $\operatorname{Im}(\log(z)) \in (-\pi, \pi)$. Clearly $\bar{z} \in D$, so

$$f(\bar{z}) = \exp(2 \log(\bar{z})) = \exp\left(i\frac{3}{2}\pi\right) = -i. \quad (3.66)$$

Now $-i \in D$, so $\bar{z} \in f^{-1}(D)$, but $\log(-i) = -i\frac{\pi}{2}$ and

$$g(f(\bar{z})) = \exp\left(\frac{1}{2} \log(-i)\right) = \exp\left(-i\frac{\pi}{4}\right) = -\bar{z}. \quad (3.67)$$

But $ab = 1$, so $g \circ f|_{f^{-1}(D)}$ cannot be a branch of z^{ab} .

The proper restriction for f is to the set

$$E = \{z \in D \mid a \log(z) \in \text{Img}(\log)\} \quad (3.68)$$

that is, $z \in E \iff \text{Im}(a \log(z)) \in (-\pi, \pi)$. Let $z \in E$. By the definition of logarithm it follows that there exists a $k \in \mathbb{Z}$ such that

$$\log(\exp(a \log(z))) = a \log(z) + i2k\pi; \quad (3.69)$$

but $\text{Im}(\log(\exp(a \log(z)))) - \text{Im}(a \log(z)) < 2\pi$, so

$$\log(\exp(a \log(z))) = a \log(z). \quad (3.70)$$

Then

$$g(f(z)) = \exp(b \log(\exp(a \log(z)))) = \exp(ab \log(z)) \quad (3.71)$$

which means that $g \circ f|_E$ is a branch of z^{ab} .

3.3 Analytic functions as mappings. Möbius transformations

3.3.1 Exercise

3.3.2 Exercise

3.3.3 Exercise

3.3.4 Exercise

3.3.5 Exercise

3.3.6 Exercise

(a) $7 + i$

$$(b) \frac{-2i \cdot 2 + 2i}{-i \cdot 2 + i \cdot (1+i)} = \frac{-2i}{-1-i} = \frac{2+2i}{2} = 1+i$$

$$(c) \frac{-2i}{1-i} = \frac{2-2i}{2} = 1-i$$

$$(d) \frac{1-i-1-i}{1-i} = \frac{-2i}{1-i} = 1-i$$

3.3.7 Exercise

Observe that T must be a Möbius transformation. It follows that $a = c$ implies $b \neq d$, $a = 0$ implies $b \neq 0$, and $c = 0$ implies $d \neq 0$. Now, allowing that $y/w = \infty$ if $w = 0$ and $z \neq 0$, we have

$$\begin{aligned} T(z) &= 1 && \text{if } z = \frac{b-d}{c-a} \\ T(z) &= 0 && \text{if } z = -\frac{b}{a} \\ T(z) &= \infty && \text{if } z = -\frac{d}{c} \end{aligned} \quad (3.72)$$

so

$$T(z) = \left(z, \frac{b-d}{c-a}, -\frac{b}{a}, -\frac{d}{c}\right). \quad (3.73)$$

3.3.8 Exercise

We know that

$$T(z) = \left(z, \frac{b-d}{c-a}, -\frac{b}{a}, -\frac{d}{c} \right). \quad (3.74)$$

Since $T(\mathbb{R}_\infty) = \mathbb{R}_\infty$ we have $\frac{b-d}{c-a} \in \mathbb{R}_\infty$, $-\frac{b}{a} \in \mathbb{R}_\infty$, $-\frac{d}{c} \in \mathbb{R}_\infty$. Then if $c-a \neq 0$, $a \neq 0$, $c \neq 0$

$$T(z) = \frac{\left(\frac{b-d}{c-a} + \frac{d}{c}\right)z - \left(\frac{d-b}{a-c} - \frac{d}{c}\right)\frac{b}{a}}{\left(\frac{b-d}{c-a} + \frac{b}{a}\right)z - \left(\frac{d-b}{a-c} - \frac{b}{a}\right)\frac{d}{c}} \quad (3.75)$$

if $c-a=0$

$$T(z) = \frac{z + \frac{b}{a}}{z + \frac{d}{c}} \quad (3.76)$$

if $a=0$

$$T(z) = \frac{\frac{b-d}{c-a} + \frac{d}{c}}{z + \frac{d}{c}} \quad (3.77)$$

if $c=0$

$$T(z) = \frac{z + \frac{b}{a}}{\frac{b-d}{c-a} + \frac{b}{a}}. \quad (3.78)$$

3.3.9 Exercise

If T is a Möbius transformation, $|a|^2 + |b|^2 = |c|^2 + |d|^2$ and $a\bar{b} = c\bar{d}$ then $T(\Gamma) = \Gamma$. Indeed, if $|z| = 1$ then

$$\begin{aligned} |T(z)| &= \left| \frac{az+b}{cz+d} \right| = \frac{|az+b|}{|cz+d|} = \frac{|az|^2 + |b|^2 + 2\Re(az\bar{b})}{|cz|^2 + |d|^2 + 2\Re(cz\bar{d})} = \\ &= \frac{|a|^2|z|^2 + |b|^2 + 2\Re(az\bar{b})}{|c|^2|z|^2 + |d|^2 + 2\Re(cz\bar{d})} = \frac{|a|^2 + |b|^2 + 2\Re(az\bar{b})}{|c|^2 + |d|^2 + 2\Re(cz\bar{d})} = 1. \end{aligned}$$

If $T(\Gamma) = \Gamma$ then T is a Möbius transformation and

$$|T(1)| = \left| \frac{a+b}{c+d} \right| = \frac{|a+b|}{|c+d|} = \frac{|a|^2 + |b|^2 + 2\Re(a\bar{b})}{|c|^2 + |d|^2 + 2\Re(c\bar{d})} = 1,$$

$$|T(-1)| = \left| \frac{-a+b}{-c+d} \right| = \frac{|-a+b|}{|-c+d|} = \frac{|a|^2 + |b|^2 - 2\Re(a\bar{b})}{|c|^2 + |d|^2 - 2\Re(c\bar{d})} = 1,$$

$$\begin{aligned} |T(i)| &= \left| \frac{ia+b}{ic+d} \right| = \frac{|ia+b|}{|ic+d|} = \frac{|a|^2 + |b|^2 + 2\Re(iab)}{|c|^2 + |d|^2 + 2\Re(ic\bar{d})} = \\ &= \frac{|a|^2 + |b|^2 - 2\Im(ab)}{|c|^2 + |d|^2 - 2\Im(c\bar{d})} = 1 \end{aligned}$$

$$\begin{aligned} |T(-i)| &= \left| \frac{-ia+b}{-ic+d} \right| = \frac{|-ia+b|}{|-ic+d|} = \frac{|a|^2 + |b|^2 + 2\Re(-iab)}{|c|^2 + |d|^2 + 2\Re(-ic\bar{d})} = \\ &= \frac{|a|^2 + |b|^2 + 2\Im(ab)}{|c|^2 + |d|^2 + 2\Im(c\bar{d})} = 1 \end{aligned}$$

whence

$$|a|^2 + |b|^2 + 2\Re(a\bar{b}) = |c|^2 + |d|^2 + 2\Re(c\bar{d}) \quad (3.79)$$

$$|a|^2 + |b|^2 - 2\Re(a\bar{b}) = |c|^2 + |d|^2 - 2\Re(c\bar{d}) \quad (3.80)$$

$$|a|^2 + |b|^2 - 2\Im(ab) = |c|^2 + |d|^2 - 2\Im(c\bar{d}) \quad (3.81)$$

$$|a|^2 + |b|^2 + 2\Im(ab) = |c|^2 + |d|^2 + 2\Im(c\bar{d}). \quad (3.82)$$

From 3.79 and 3.80 follows that $|a|^2 + |b|^2 = |c|^2 + |d|^2$. Then from 3.79 and 3.80 follows that $\Re(a\bar{b}) = \Re(c\bar{d})$, from 3.81 and 3.82 that $\Im(ab) = \Im(c\bar{d})$.

3.3.10 Exercise

Let $\gamma = \{z \in \mathbb{C} \mid |z| = 1\}$ and

$$T(z) = \frac{az + b}{cz + d}. \quad (3.83)$$

If T is a Möbius transformation and $T(D) = D$, then $T(\gamma) = \gamma$. Indeed, $T(\overline{D}) \subseteq \overline{T(D)} = \overline{D}$ since T is continuous; $T(\overline{D})$ is closed, since \overline{D} is compact and therefore such is $T(\overline{D})$, so $T(\overline{D}) \supseteq \overline{T(D)} = \overline{D}$. Then $T(\overline{D}) = \overline{D}$. But $\overline{D} = \{z \in \mathbb{C} \mid |z| \leq 1\}$. The last two imply that $T(\gamma) = \gamma$. As seen in Exercise 3.3.9 this implies that $|a|^2 + |b|^2 = |c|^2 + |d|^2$ and $a\bar{b} = c\bar{d}$. Giving γ the orientation $C = (1, i, -1)$, 0 lies in the left of (γ, C) :

$$(0, 1, i, -1) = \frac{\frac{0-i}{0+1}}{\frac{1-i}{1+i}} = 1 - i \quad (3.84)$$

so $T(0)$ must lie in the left of (γ, C) as well, that is $\operatorname{Im}(T(0), 1, i, -1) < 0$. But

$$T(0) = \frac{b}{d} \quad (3.85)$$

and

$$\left(\frac{b}{d}, 1, i, -1 \right) = \frac{\frac{b-i}{d+1}}{\frac{1-i}{1+i}} = 1 + i \frac{b-d}{b+d} \quad (3.86)$$

so

$$\operatorname{Re} \left(\frac{b-d}{b+d} \right) < 0. \quad (3.87)$$

But

$$\frac{b-d}{b+d} = \frac{|b|^2 - d\bar{b} + b\bar{d} - |d|^2}{|b+d|^2} = \frac{|b|^2 - |d|^2 + 2\operatorname{Im}(b\bar{d})i}{|b+d|^2} \quad (3.88)$$

so 3.87 yields $|d| > |b|$.

If T is a Möbius transformation and $|a|^2 + |b|^2 = |c|^2 + |d|^2$, $a\bar{b} = c\bar{d}$ and $|d| > |b|$, then $T(\gamma) = \gamma$ and $\operatorname{Im}(T(0), 1, i, -1) < 0$, so $T(D) = D$.

3.3.11 Exercise

3.3.12 Exercise

3.3.13 Exercise

3.3.14 Exercise

Let c_1 and c_2 be the centres of the two circles γ_1 and γ_2 . Then a, c_1, c_2 are aligned and distinct. That is, $c_1 - a = \alpha(c_2 - a)$ where $\alpha \in \mathbb{R}$. Moreover, $\alpha > 0$. We can suppose also $\alpha > 1$, by swapping names between c_1 and c_2 if needed.

If

$$\begin{aligned} c_1 - a &= |c_1 - a| e^{i\theta} \\ c_2 - a &= |c_2 - a| e^{i\tau} \\ c_1 - c_2 &= |c_1 - c_2| e^{i\sigma} \end{aligned}$$

then

$$|c_1 - a| e^{i\theta} = \alpha |c_2 - a| e^{i\tau} \quad (3.89)$$

and

$$\frac{|c_1 - a|}{\alpha |c_1 - a|} = e^{i(\tau - \theta)}. \quad (3.90)$$

Since the left side is real and positive, so must the right side be too, which implies $\tau = \theta$. Also

$$c_1 - c_2 = c_1 - a - (c_2 - a) = (\alpha - 1)(c_2 - a) \quad (3.91)$$

where $\alpha - 1 > 0$, so

$$\frac{|c_1 - c_2|}{(\alpha - 1)|c_2 - a|} = e^{i(\sigma - \tau)} \quad (3.92)$$

and $\sigma = \tau$.

The translation

$$T_1(z) = z - a \quad (3.93)$$

takes a in 0. The rotation

$$T_2(z) = e^{-i\sigma} z \quad (3.94)$$

takes $T_1(c_1)$ and $T_1(c_2)$ on the imaginary axis. In fact

$$\begin{aligned} T_2(T_1(c_1)) &= e^{-i\sigma}(c_1 - a) = e^{-i\sigma}|c_1 - a|e^{i\theta} = e^{-i\sigma}|c_1 - a|e^{i\sigma} = |c_1 - a|i \\ T_2(T_1(c_2)) &= e^{-i\sigma}(c_2 - a) = e^{-i\sigma}|c_2 - a|e^{i\tau} = e^{-i\sigma}|c_2 - a|e^{i\sigma} = |c_1 - a|i. \end{aligned}$$

Let

$$\begin{aligned} d_1 &= |c_1 - a|i \\ d_2 &= |c_2 - a|i. \end{aligned}$$

Since for any z, w in \mathbb{C} $|T_2(T_1(z)) - T_2(T_1(w))| = |z - w|$, $T_2 \circ T_1$ takes γ_1 onto

$$\Gamma_1 = \{z \in \mathbb{C} \mid |z - d_1| = |c_1 - a|\}$$

and γ_2 onto

$$\Gamma_2 = \{z \in \mathbb{C} \mid |z - d_2| = |c_2 - a|\}.$$

The inversion

$$T_3(z) = \frac{1}{z} \quad (3.95)$$

takes the circles Γ_1 and Γ_2 onto the straight lines $r_1 : \operatorname{Im} z = -\frac{1}{2|c_1 - a|}$ and $r_2 : \operatorname{Im} z = -\frac{1}{2|c_2 - a|}$ respectively. So $T_3 \circ T_2 \circ T_1$ sends γ_1 to r_1 and γ_2 to r_2 . Moreover, D is mapped onto the stripe between r_1 and r_2 .

Let

$$\begin{aligned} K &= \frac{1}{4} \left(\frac{1}{|c_1 - a|} + \frac{1}{|c_2 - a|} \right) \\ L &= \frac{1}{2} \left(\frac{1}{|c_2 - a|} - \frac{1}{|c_1 - a|} \right). \end{aligned}$$

The translation

$$T_4(z) = z + K \quad (3.96)$$

takes the stripe

$$\left\{ z \in \mathbb{C} \mid -\frac{1}{2|c_2 - a|} \leq \operatorname{Im} z \leq -\frac{1}{2|c_1 - a|} \right\} \quad (3.97)$$

onto the stripe

$$\left\{ z \in \mathbb{C} \mid -\frac{L}{2} \leq \operatorname{Im} z \leq \frac{L}{2} \right\} \quad (3.98)$$

and the dilation

$$T_5(z) = \frac{\pi}{L} \quad (3.99)$$

takes this last to the stripe

$$\left\{ z \in \mathbb{C} \mid -\frac{\pi}{2} \leq \operatorname{Im} z \leq \frac{\pi}{2} \right\}. \quad (3.100)$$

Eventually the function

$$T_6(z) = \frac{e^z - 1}{e^z + 1} \quad (3.101)$$

takes the last stripe onto the unit disk. Let $T = T_6 \circ T_5 \circ T_4 \circ T_3 \circ T_2 \circ T_1$. The map T takes D onto the unit circle, and

$$T(z) = \frac{e^{\left[\frac{\pi}{L} \left(\frac{1}{e^{-i\sigma}(z-a)} + K \right) \right] - 1}}{e^{\left[\frac{\pi}{L} \left(\frac{1}{e^{-i\sigma}(z-a)} + K \right) \right] + 1}} \quad (3.102)$$

or, in the expanded form

$$T(z) = \frac{e^{\left[\frac{\pi}{2} \left(\frac{1}{|c_2-a|} - \frac{1}{|c_1-a|} \right) \left(\frac{1}{e^{-i \arg(c_1-c_2)}(z-a)} + \frac{1}{4} \left(\frac{1}{|c_1-a|} + \frac{1}{|c_2-a|} \right) \right) \right] - 1}}{e^{\left[\frac{\pi}{2} \left(\frac{1}{|c_2-a|} - \frac{1}{|c_1-a|} \right) \left(\frac{1}{e^{-i \arg(c_1-c_2)}(z-a)} + \frac{1}{4} \left(\frac{1}{|c_1-a|} + \frac{1}{|c_2-a|} \right) \right) \right] + 1}. \quad (3.103)$$

3.3.15 Exercise

Let

$$D = \{z \in \mathbb{C} \mid |z| < 1\}, \quad (3.104)$$

$$H = \{z \in \mathbb{C} \mid \operatorname{Re} z < 0\} \quad (3.105)$$

and

$$E = \{z \in \mathbb{C} \mid 0 < |z| < 1\}. \quad (3.106)$$

The map

$$T(z) = \frac{z-1}{z+1} \quad (3.107)$$

maps D onto H . Then

$$S(z) = e^{\frac{z-1}{z+1}} \quad (3.108)$$

maps D onto E .

Let's see some properties of S . Let $h < 0$. We have

$$T\left(\frac{h}{1-h} + \frac{1}{1-h}e^{i\theta}\right) = h + i\frac{(1-h)\sin\theta}{1+\cos\theta} \quad (3.109)$$

which means that S maps the circle C_h^1 centered in

$$a = \frac{h}{1-h} \quad (3.110)$$

with radius

$$r = \frac{1}{1-h} \quad (3.111)$$

minus the point -1 into the circle C_h^2 centered in 0 with radius e^h . Moreover

$$\lim_{\theta \rightarrow \pi^-} \frac{\sin\theta}{1+\cos\theta} = +\infty \quad (3.112)$$

so when the point z approaches -1 on the upper half of the circle C_h^1 its image $S(z)$ spans infinitely many times the circle C_h^2 turning counterclockwise around 0 . Also if the point z approaches -1 on the lower half of the circle C_h^1 its image $S(z)$ spans infinitely many times the circle C_h^2 turning clockwise around 0 .

3.3.16 Exercise

The Möbius transformation

$$T(z) = \frac{z-1}{z+1}$$

takes G onto $\mathbb{C} - (\{z \in \mathbb{C} \mid \operatorname{Im}(z) = 0, \operatorname{Re}(z) \leq 0\} \cup \{1\})$. Therefore, if \log is the principal branch of the logarithm, the function

$$g(z) = \log(T(z))$$

takes G onto $\{z \in \mathbb{C} \mid |\operatorname{Im}(z)| < \pi\} - \{0\}$. Then

$$h(z) = \exp\left(\frac{1}{2} \log(T(z))\right)$$

takes G onto $H = \{z \in \mathbb{C} \mid \operatorname{Re}(z) > 0\} - \{1\}$. If $\sqrt{-}$ means the principal branch of the square root, then h can be written as

$$h(z) = \sqrt{\frac{z-1}{z+1}}.$$

The Möbius transformation

$$S(w) = \frac{2w-1}{2w+1}$$

takes H onto $\{z \in \mathbb{C} \mid |z| < 1\} - \{\frac{1}{3}\}$, so S^2 takes H onto the unit circle. Summing up, the analytic function

$$f(z) = \left(\frac{2\sqrt{\frac{z-1}{z+1}} - 1}{2\sqrt{\frac{z-1}{z+1}} + 1} \right)^2$$

takes G onto the unit circle.

3.3.17 Exercise

Let $f(G) \subseteq \Gamma$ where Γ is a circle. There is a Möbius transformation T such that $T(\Gamma) = \mathbb{R}_\infty$, then $T \circ f(G) \subseteq \mathbb{R}_\infty$, which implies that $T \circ f$ is constant, and so is f .

3.3.18 Exercise

3.3.19 Exercise

3.3.20 Exercise

Let

$$\alpha = \lambda a$$

$$\beta = \lambda b$$

$$\gamma = \lambda c$$

$$\delta = \lambda d.$$

Then for $z \in \mathbb{C}$

$$T(z) = \frac{\lambda az + \lambda b}{\lambda cz + \lambda d} = \frac{az + b}{cz + d} = S(z). \quad (3.113)$$

Let $S = T$. From

$$T^{-1}(w) = \frac{\delta w - \beta}{-\gamma w + \alpha} \quad (3.114)$$

follows from all $w \in \mathbb{C}$

$$ST^{-1}(w) = \frac{a\frac{\delta w - \beta}{-\gamma w + \alpha} + b}{c\frac{\delta w - \beta}{-\gamma w + \alpha} + d} = \frac{(a\delta - b\gamma)w + b\alpha - a\beta}{(c\delta - d\gamma)w + d\alpha - c\beta} = w \quad (3.115)$$

whence

$$(c\delta - d\gamma)w^2 + (d\alpha - c\beta - a\delta + b\gamma)w - b\alpha + a\beta = 0. \quad (3.116)$$

This implies

$$\begin{aligned} c\delta - d\gamma &= 0 \\ d\alpha - c\beta - a\delta + b\gamma &= 0 \\ -b\alpha + a\beta &= 0. \end{aligned}$$

whence

$$\begin{aligned} \frac{c}{\gamma} &= \frac{d}{\delta} \\ \frac{a}{\alpha} &= \frac{b}{\beta}. \end{aligned}$$

Now let

$$\begin{aligned} t_1 &= \frac{c}{\gamma} = \frac{d}{\delta} \\ t_2 &= \frac{a}{\alpha} = \frac{b}{\beta}. \end{aligned}$$

Then

$$t_1\delta\alpha - t_1\gamma\beta - t_2\alpha\delta + t_2\beta\gamma = 0 \quad (3.117)$$

and

$$(t_1 - t_2)(\alpha\delta - \beta\gamma) = 0 \quad (3.118)$$

which implies, if T is a Möbius transformation, that $t_1 = t_2$ and so

$$\begin{aligned} \alpha &= t_1^{-1}a \\ \beta &= t_1^{-1}b \\ \gamma &= t_1^{-1}c \\ \delta &= t_1^{-1}d. \end{aligned}$$

If T is not a Möbius transformation, then it has constant value $\frac{\beta}{\delta}$, so it must be $\alpha = \gamma = 0$, otherwise T wouldn't be defined for $z = -\frac{\delta}{\gamma}$. From $T = S$ follows that S also must have constant value $\frac{\beta}{\delta}$, but if S is constant its value is $\frac{b}{d}$ and $a = c = 0$, so

$$\frac{b}{d} = \frac{\beta}{\delta} \quad (3.119)$$

and

$$\frac{b}{\beta} = \frac{d}{\delta}. \quad (3.120)$$

3.3.21 Exercise

Well:

$$\begin{aligned} S^{-1}TS(S^{-1}(z_1)) &= S^{-1}(T(z_1)) = S^{-1}(z_1) \\ S^{-1}TS(S^{-1}(z_2)) &= S^{-1}(T(z_2)) = S^{-1}(z_2). \end{aligned}$$

3.3.22 Exercise

Let T be defined by

$$T(z) = \frac{az + b}{cz + d}. \quad (3.121)$$

(a) If T has 0 and ∞ as its only fixed points, then

$$\begin{aligned}\frac{b}{d} &= 0 \\ \frac{a}{c} &= \infty\end{aligned}$$

whence

$$\begin{aligned}b &= 0 \\ c &= 0\end{aligned}$$

and

$$T(z) = \frac{a}{d}z. \quad (3.122)$$

with $a \neq d$, and it is clear that such a transformation has 0 and ∞ as its only fixed points.

(b) If T has ∞ as its only fixed point, then $\frac{a}{c} = \infty$ and $c = 0$. Then

$$T(z) = \frac{az + b}{d}. \quad (3.123)$$

Now z is a fixed point of T if and only if

$$\left(\frac{a}{d} - 1\right)z + \frac{b}{d} = 0 \quad (3.124)$$

so T has no other fixed point if and only if $a = d$ and $b \neq 0$, that is:

$$T(z) = z + \frac{b}{d}. \quad (3.125)$$

3.3.23 Exercise

Let T be defined by

$$T(z) = \frac{az + b}{cz + d}. \quad (3.126)$$

If $T(0) = \infty$ and $T(\infty) = 0$ then

$$\begin{aligned}\frac{b}{d} &= \infty \\ \frac{a}{c} &= 0\end{aligned}$$

so $d = 0$ and $a = 0$, and

$$T(z) = \frac{b}{cz}. \quad (3.127)$$

If $T(z) = az^{-1}$ it is obvious that $T(0) = \infty$ and $T(\infty) = 0$.

3.3.24 Exercise

If T has one fixed point z_1 , let R be a Möbius transformation such that $R(\infty) = z_1$. Then $R^{-1}TR$ has ∞ as its only fixed point. Indeed, $R^{-1}TR(\infty) = R^{-1}T(z_1) = R^{-1}(z_1) = \infty$, and from $R^{-1}TR(z) = z$ follows $TR(z) = R(z)$, so $R(z)$ is a fixed point of T , that is $R(z) = z_1$, and $z = \infty$. Then $R^{-1}TR$ is a translation, and so is $R^{-1}SR$. Since two translations commute

$$R^{-1}TRR^{-1}SR = R^{-1}SRR^{-1}TR \quad (3.128)$$

that is

$$R^{-1}TSR = R^{-1}STR \quad (3.129)$$

whence $TS = ST$.

If T has two fixed points z_1, z_2 , let R be a Möbius transformationsuch that $R(\infty) = z_1$ and $R(0) = z_2$. Then $R^{-1}TR$ and $R^{-1}SR$ have fixed points ∞ and 0, so they are dilations, and since dilations commute, it follows as in the former case that S and T commute too.

3.3.25 Exercise

Let \mathcal{M} be the group of Möbius transformations. For $u, v \in \mathbb{C}$, let

$$\mathcal{H}_{u,v} = \{T \in \mathcal{M} \mid T(u) = u, T(v) = v\}. \quad (3.130)$$

Then

- $T, S \in \mathcal{H}_{u,v} \Rightarrow TS^{-1} \in \mathcal{H}_{u,v}$
- $T, S \in \mathcal{H}_{u,v} \Rightarrow TS = ST$

that is, $\mathcal{H}_{u,v}$ is an abelian subgroup of \mathcal{M} .

Every $\mathcal{H}_{u,v}$ is maximal, that is, if \mathcal{G} is a subgroup of \mathcal{M} and $\mathcal{H}_{u,v} \subset \mathcal{G}$ then \mathcal{G} is not abelian.

Indeed, suppose $u \neq v$ and let $R \in \mathcal{G}$ and $R \notin \mathcal{H}_{u,v}$. If $R(u) = u$ but $R(v) \neq v$ then R does not commute with any $T \in \mathcal{H}_{u,v}$: $TR(v) = RT(v) = R(v)$ implies that $R(v)$ is a fixed point of T , that is either $R(v) = v$ or $R(v) = u$, both cases impossible. The same if $R(v) = v$ but $R(u) \neq u$. If $R(u) \neq u$ and $R(v) \neq v$ then $RT = TR$ implies $RT(u) = TR(u) = R(u)$, that is $R(u)$ is a fixed point of T , so $R(u) = v$, and for the same reason $R(v) = u$. But R must have two fixed points, since if z is a fixed point of R then $z \neq u$ and $z \neq v$ but $RT(z) = TR(z) = T(z)$, so $T(z)$ is a fixed point of R and $T(z) \neq z$ because z is not a fixed point of T . Let w be the second fixed point of R . For the same reason as before, $T(z) = w$ and $T(w) = z$. But in $\mathcal{H}_{u,v}$ there is only one element which swaps points in \mathbb{C} (see Proposition 8.3.4), so R cannot commute with all the elements of $\mathcal{H}_{u,v}$.

Now suppose $u = v$ and let $R \in \mathcal{G}$ and $R \notin \mathcal{H}_{u,u} = \mathcal{H}_{u,u}$, $T \in \mathcal{H}_{u,u}$. If R has one fixed point z then $z \neq u$ and $RT = TR$ implies $RT(u) = TR(u) = R(u)$, so $R(u) = u$ against the hypothesis. If R has two fixed points, z and w , suppose $z = u$ and $w \neq u$. Then $TR = RT$ implies $RT(w) = TR(w) = T(w)$ and $T(w)$ is a fixed point of R . But $T(w) = w$ implies $w = u$, $T(w) = z$ implies $T(w) = u$ and again $w = u$, against the hypothesis. The same if $z \neq u$ and $w = u$. If $z \neq u$ and $w \neq u$, then $TR = RT$ implies $RT(u) = TR(u) = R(u)$, that is $R(u) = u$, and $u = z$ or $u = w$, against the hypothesis.

Now, let \mathcal{A} be an abelian subgroup of \mathcal{M} .

If \mathcal{A} contains only elements with the same fixed points or point, then $\mathcal{A} \subseteq \mathcal{H}_{u,v}$ for some $u, v \in \mathbb{C}$, either $v \neq u$ or $u = v$.

If \mathcal{A} contains at least two elements T and S with different fixed points z_1, z_2 , and w_1, w_2 , we have seen that $z_1 \neq z_2$, $w_1 \neq w_2$ and $\{z_1, z_2\} \cap \{w_1, w_2\} = \emptyset$. Furthermore, $T(w_1) = w_2$ and $S(z_1) = z_2$, that is, $T^2 = S^2 = I$. Now in \mathcal{A} there must be $U = ST$ too, and $U \neq S$, $U \neq T$, since, for instance, $ST = S$ implies $T = I$, but in \mathcal{A} there cannot be any other element of \mathcal{M} . Indeed, if R is any Möbius transformation that commutes with S and T , then $R^2 = I$ and each one of S, T, R must swap the others' fixed points, so STR has 6 fixed points, that is $STR = I$ and $R = ST = U$.

Summing up: if \mathcal{A} is an abelian subgroup of \mathcal{M} then either $\mathcal{A} \subseteq \mathcal{H}_{u,v}$ or for some elements $u, v \in \mathbb{C}$ with $u = v$ or $u \neq v$, or $\mathcal{A} = \{I, S, T, U\}$ where S, T, U are elements of \mathcal{M} such that $S^2 = T^2 = U^2 = I$.

3.3.26 Exercise

(a) We have, for $z \in \mathbb{C}$

$$\phi \left(\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix} \right) (z) = \phi \left(\begin{pmatrix} a'a'' + b'c'' & a'b'' + b'd'' \\ c'a'' + d'c'' & c'b'' + d'd'' \end{pmatrix} \right) (z) = \quad (3.131)$$

$$= \frac{(a'a'' + b'c'')z + a'b'' + b'd''}{(c'a'' + d'c'')z + c'b'' + d'd''} \quad (3.132)$$

and

$$\phi \left(\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \right) \circ \phi \left(\begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix} \right) (z) = \frac{a' \frac{a''z + b''}{c''z + d''} + b'}{c' \frac{a''z + b''}{c''z + d''} + d'} \quad (3.133)$$

$$= \frac{(a'a'' + b'c'')z + a'b'' + b'd''}{(c'a'' + d'c'')z + c'b'' + d'd''}. \quad (3.134)$$

If for all $z \in \mathbb{C}$

$$\phi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) (z) = z \quad (3.135)$$

then for all $z \in \mathbb{C}$

$$z^2 + (d - a)z - b = 0 \quad (3.136)$$

whence

$$\begin{cases} c = 0 \\ b = 0 \\ a = d \end{cases} \quad (3.137)$$

and

$$\text{Ker } \phi = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \mid a \in \mathbb{C} \right\}. \quad (3.138)$$

It is obvious that $\text{Img } \phi = \mathcal{M}$.

(b) We only need show that for any $A \in GL_2(\mathbb{C})$ there is $A' \in SL_2(\mathbb{C})$ such that $\phi(A') = \phi(A)$. Let $\Delta \in \mathbb{C}$ such that $\Delta^2 = \det A$, and

$$A' = \frac{1}{\Delta} A. \quad (3.139)$$

Clearly $\phi(A') = \phi(A)$ and $\det A' = \frac{1}{\Delta^2} \det A = 1$. Finally

$$\text{Ker } \phi \cap SL_2(\mathbb{C}) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}. \quad (3.140)$$

3.3.27 Exercise

The group \mathcal{M} of all Möbius transformation is simple because $SL_2(\mathbb{C})$ has no normal subgroups other than

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \quad (3.141)$$

which is the kernel of a surjective omomorphism from $SL_2(\mathbb{C})$ to \mathcal{M} .

3.3.28 Exercise

3.3.29 Exercise

(a) Since

$$u_{\gamma, \delta}^{-1}(z) = \frac{\bar{\gamma}z + \bar{\delta}}{-\delta z + \gamma}$$

we have

$$u_{\alpha, \beta} \circ u_{\gamma, \delta}^{-1}(z) = \frac{(\alpha\bar{\gamma} - \delta\beta)z + \alpha\bar{\delta} + \beta\gamma}{-(\beta\bar{\gamma} + \delta\alpha)z - \bar{\beta}\bar{\delta} + \gamma\bar{\alpha}}$$

so $u_{\alpha, \beta} \circ u_{\gamma, \delta}^{-1} \in U$.

(b) Since $A \in SU_2 \iff \bar{A}^t = A^{-1} \wedge \det A = 1$, if $A, B \in SU_2$ we have

$$\overline{(AB^{-1})}^t = \overline{B^{-1}}^t \bar{A}^t = \bar{B}^{t-1} \bar{A}^t = BA^{-1} = (AB^{-1})^{-1}$$

and

$$\det(AB) = \det A \det B = 1$$

so $AB \in SU_2$. If

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

then

$$\bar{A}^t = \begin{pmatrix} \bar{a} & \bar{c} \\ \bar{b} & \bar{d} \end{pmatrix}$$

so $A \in SU_2$ implies

$$\begin{aligned} |a|^2 + |b|^2 &= 1 \\ |c|^2 + |d|^2 &= 1 \\ a\bar{c} + b\bar{d} &= 0 \\ ad - bc &= 1 \end{aligned}$$

From the last two

$$a = -\frac{\bar{d}}{\bar{c}}b, \quad b(|d|^2 + |c|^2) = -\bar{c}$$

and $b = -\bar{c}$. Again from the last but one

$$b(\bar{d} - a) = 0.$$

If $b \neq 0$ then $a = \bar{d}$. If $b = 0$ then also $c = 0$, $|a|^2 = |d|^2 = 1$ and $ad = 1$, so $a = d = 1$ or $a = d = -1$.

(c) This is false, since

$$\begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} \begin{pmatrix} \gamma & \delta \\ -\bar{\delta} & \bar{\gamma} \end{pmatrix} = \begin{pmatrix} \alpha\gamma - \beta\bar{\delta} & \alpha\delta + \beta\bar{\gamma} \\ -\gamma\bar{\beta} - \bar{\alpha}\bar{\delta} & \bar{\delta}\bar{\beta} + \bar{\alpha}\bar{\gamma} \end{pmatrix}$$

while

$$u_{\alpha,\beta} \circ u_{\gamma,\delta}(z) = \frac{(\alpha\gamma - \beta\bar{\delta})z - \alpha\bar{\delta} - \bar{\beta}\bar{\gamma}}{(\beta\gamma + \delta\bar{\alpha})z - \beta\bar{\delta} + \bar{\alpha}\bar{\gamma}}.$$

On the other hand the homomorphism $\phi : GL_2(\mathbb{C}) \rightarrow \mathcal{M}$ obviously takes $SU_2(\mathbb{C})$ onto U . From $I \in SU_2(\mathbb{C})$ and $-I \in SU_2(\mathbb{C})$ follows that $\ker \phi|_{SU_2(\mathbb{C})} = \{I, -I\}$.

(c) This way $T_v^{(l)}$ is *not* well defined. Take $v(z) = z$ and $f(z) = z$. Then $v = u_{1,1}$ and $v = u_{-1,-1}$. In the first case

$$T_v^{(l)}(f)(z) = (1)^l f(v(z)) = z$$

in the second one

$$T_v^{(l)}(f)(z) = (-1)^l f(v(z)) = -z.$$

The proper way is to take $l \in \mathbb{N}$. Since $\ker \phi|_{SU_2(\mathbb{C})} = \{I, -I\}$, if $V = u_{\alpha,\beta} = u_{\gamma,\delta}$ then

$$\begin{pmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \begin{pmatrix} \gamma & -\bar{\delta} \\ \delta & \bar{\gamma} \end{pmatrix}^{-1} = I$$

and $\alpha = \gamma$, $\beta = \delta$, or

$$\begin{pmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \begin{pmatrix} \gamma & -\bar{\delta} \\ \delta & \bar{\gamma} \end{pmatrix}^{-1} = -I$$

and $\alpha = -\gamma$, $\beta = -\delta$. Since

$$(\beta z + \bar{\alpha})^{2l} f(v(z)) = (-(\beta z + \bar{\alpha}))^{2l} f(v(z))$$

$T_u^{(l)}$ is well defined.

Then, if $v \in U$, say $v = u_{\alpha,\beta}$, so, for $f, g \in H_l$ and $a, b \in \mathbb{C}$:

$$\begin{aligned} T_v^{(l)}(af + bg)(z) &= (\beta z + \bar{\alpha})^{2l} (af(v(z)) + bg(v(z))) = \\ &= a(\beta z + \bar{\alpha})^{2l} f(v(z)) + b(\beta z + \bar{\alpha})^{2l} g(v(z)) = \\ &= aT_v^{(l)}(f)(z) + bT_v^{(l)}(g)(z) = \\ &= (aT_v^{(l)}(f) + bT_v^{(l)}(g))(z) \end{aligned}$$

so $T_v^{(l)}$ is a linear transformation. It is easy to check that for any $v \in U$ $T_v^{(l)} \circ T_{v-1}^{(l)} = \text{id}_{H_l}$. Let $\mathcal{A}(H_l)$ the group of automorphisms of H_l . The map

$$\begin{aligned}\psi : U &\rightarrow \mathcal{A}(H_l) \\ u &\mapsto T_u^{(l)}\end{aligned}$$

is *not* a homomorphisms, at least if the composition in $\mathcal{A}(H_l)$ is defined in the usual way. In fact, if $v, w \in U$ and $v = u_{\alpha, \beta}$, $w = u_{\gamma, \delta}$

$$T_{uv}^{(l)}(f)(z) = ((\beta\gamma + \bar{\alpha}\delta)z - \beta\bar{\delta} + \bar{\alpha}\gamma)^{2l} f(uv(z))$$

and

$$\begin{aligned}(T_u^{(l)} \circ T_v^{(l)})(f)(z) &= T_u^{(l)}(T_v^{(l)}(f))(z) = (\beta z + \bar{\alpha})^{2l} (T_v^{(l)}(f))(u(z)) = \\ &= (\beta z + \bar{\alpha})^{2l} (\delta u(z) + \bar{\gamma})^{2l} f(v(u(z))) = \\ &= ((\alpha\delta + \beta\bar{\gamma})z - \delta\bar{\beta} + \bar{\alpha}\bar{\gamma})^{2l} f(v(u(z))).\end{aligned}$$

But if we define the composition in $\mathcal{A}(H_l)$ as $T \circ S(f) = S(T(f))$, then

$$\begin{aligned}(T_u^{(l)} \circ T_v^{(l)})(f)(z) &= T_v^{(l)}(T_u^{(l)}(f))(z) = (\delta z + \bar{\gamma})^{2l} (T_u^{(l)}(f))(v(z)) = \\ &= (\delta z + \bar{\gamma})^{2l} (\beta v(z) + \bar{\alpha})^{2l} f(u(v(z))) = \\ &= ((\beta\gamma + \bar{\alpha}\delta)z - \beta\bar{\delta} + \bar{\alpha}\bar{\gamma})^{2l} f(uv(z)).\end{aligned}$$

To show that ψ is injective, suppose $\psi(v)$ is the identity of $\mathcal{A}(H_l)$, that is, for any $f \in H_l$:

$$T_v^l(f) = f.$$

If $f(z) = 1$, and $v = u_{\alpha, \beta}$ then

$$T_v^l(f)(z) = (\beta z + \bar{\alpha})^{2l} f(v(z)) = (\beta z + \bar{\alpha})^{2l} = 1.$$

Since $2l$ is an even non-negative integer

$$\beta z + \bar{\alpha} = \pm 1$$

whence $\beta = 0$ and $\alpha = \pm 1$. That is, v is the identity of U .

3.3.30 Exercise

We have

$$|f(z)| = e^{\Re(-\frac{i}{2} \log(\frac{iz+i}{-z+1}))} = e^{\frac{1}{2} \Im(\log(\frac{iz+i}{-z+1}))} = e^{\frac{1}{2} \arg(\frac{iz+i}{-z+1})}.$$

The Möbius transformation

$$T(z) = \frac{iz+i}{-z+1}$$

takes D onto the upper half plane, as

$$\begin{cases} T(1) = \infty \\ T(i) = -1 \\ T(-1) = 0. \end{cases}$$

This yields

$$0 < \arg\left(\frac{iz+i}{-z+1}\right) < \pi$$

whence

$$1 < |f(z)| < e^{\frac{\pi}{2}}.$$

If S is a Möbius transformation that maps D onto D and such that $f(S(z)) = f(z)$, then there is an integer k such that for every $z \in D$

$$-\frac{i}{2} \log \left(\frac{iS(z) + i}{-S(z) + 1} \right) = -\frac{i}{2} \log \left(\frac{iz + i}{-z + 1} \right) + 2k\pi i.$$

Since both the arguments of the logarithms belong to the upper half plane

$$\frac{i}{2} \log \left(\frac{S(z) + 1}{-S(z) + 1} \frac{-z + 1}{z + 1} \right) = 2h\pi$$

for some integer h , or

$$\frac{S(z) + 1}{-S(z) + 1} \frac{-z + 1}{z + 1} = e^{4h\pi}$$

which yields

$$S(z) = \frac{(e^{4k\pi} + 1)z + e^{4k\pi} - 1}{(e^{4k\pi} - 1)z + e^{4k\pi} + 1}.$$

All these Möbius transformations take D onto D .

Chapter 4

Complex Integration

4.1 Riemann-Stieltjes integrals

4.1.1 Exercise

If $P = \{t_0, \dots, t_n\}$ is a partition of $[a, b]$, we have, since γ is non decreasing

$$\begin{aligned} V(\gamma; P) &= \sum_{k=1}^n |\gamma(t_k) - \gamma(t_{k-1})| = \sum_{k=1}^n \gamma(t_k) - \gamma(t_{k-1}) = \\ &= \gamma(t_n) - \gamma(t_0) = \gamma(b) - \gamma(a). \end{aligned}$$

4.1.2 Exercise

(a) Say $\#\mathcal{Q} = \#\mathcal{P} + 1$. Then if

$$\mathcal{P} = \{t_0, \dots, t_n\} \tag{4.1}$$

we will have, for some j such that $0 \leq j \leq n - 1$

$$\mathcal{Q} = \{t_0, \dots, t_j, s, t_{j+1}, \dots, t_n\}; \tag{4.2}$$

then

$$\begin{aligned} v(\gamma; \mathcal{Q}) &= \sum_{k=1}^j |\gamma(t_k) - \gamma(t_{k-1})| + |\gamma(s) - \gamma(t_j)| + \\ &\quad + |\gamma(t_{j+1}) - \gamma(s)| + \sum_{k=j+2}^n |\gamma(t_k) - \gamma(t_{k-1})| \end{aligned}$$

and

$$\begin{aligned} v(\gamma; \mathcal{P}) &= \sum_{k=1}^n |\gamma(t_k) - \gamma(t_{k-1})| \leq \\ &\leq \sum_{k=1}^j |\gamma(t_k) - \gamma(t_{k-1})| + |\gamma(t_{j+1}) - \gamma(t_j)| + \\ &\quad + \sum_{k=j+2}^n |\gamma(t_k) - \gamma(t_{k-1})| \leq \\ &\leq \sum_{k=1}^j |\gamma(t_k) - \gamma(t_{k-1})| + |\gamma(s) - \gamma(t_j)| + \\ &\quad + |\gamma(t_{j+1}) - \gamma(s)| + \sum_{k=j+2}^n |\gamma(t_k) - \gamma(t_{k-1})| = v(\gamma; \mathcal{Q}). \end{aligned}$$

If $\#\mathcal{Q} = \#\mathcal{P} + h$, then $\mathcal{Q} = \mathcal{P} \cup \{s_1, \dots, s_h\}$.

Let

- $\mathcal{Q}_1 = \mathcal{P} \cup \{s_1\}$
- $\mathcal{Q}_i = \mathcal{Q}_{i-1} \cup \{s_i\} \quad i = 2, \dots, h,$

and for what already proved

$$v(\gamma; \mathcal{P}) \leq v(\gamma; \mathcal{Q}_1) \leq v(\gamma; \mathcal{Q}_2) \leq \dots \leq v(\gamma; \mathcal{Q}_h) = v(\gamma; \mathcal{Q}). \quad (4.3)$$

(b) For a partition $\mathcal{P} = \{t_0, \dots, t_n\}$ we have

$$\begin{aligned} v(\alpha\gamma + \beta\sigma; \mathcal{P}) &= \sum_{k=1}^j |(\alpha\gamma + \beta\sigma)(t_k) - (\alpha\gamma + \beta\sigma)(t_{k-1})| = \\ &= \sum_{k=1}^j |\alpha\gamma(t_k) + \beta\sigma(t_k) - \alpha\gamma(t_{k-1}) - \beta\sigma(t_{k-1})| \leq \\ &\leq \sum_{k=1}^j |\alpha(\gamma(t_k) - \gamma(t_{k-1}))| + |\beta(\sigma(t_k) - \sigma(t_{k-1}))| = \\ &= \sum_{k=1}^j |\alpha| |\gamma(t_k) - \gamma(t_{k-1})| + |\beta| |\sigma(t_k) - \sigma(t_{k-1})| = \\ &= |\alpha| v(\gamma; \mathcal{P}) + |\beta| v(\sigma; \mathcal{P}) \leq |\alpha| V(\gamma) + |\beta| V(\sigma) \end{aligned}$$

whence $V(\alpha\gamma + \beta\sigma) \leq |\alpha| V(\gamma) + |\beta| V(\sigma)$.

4.1.3 Exercise

4.1.4 Exercise

4.1.5 Exercise

We have, for $t \in (0, 1]$,

$$\gamma'(t) = \frac{e^{-\frac{1}{t}}}{t^2} \left[\cos \frac{1}{t} + \sin \frac{1}{t} + i \left(\sin \frac{1}{t} - \cos \frac{1}{t} \right) \right] \quad (4.4)$$

and

$$|\gamma'(t)| = \sqrt{2} \frac{e^{-\frac{1}{t}}}{t^2}. \quad (4.5)$$

Then for $0 < h < 1$, the path

$$\begin{aligned} \gamma_h : [h, 1] &\rightarrow \mathbb{C} \\ t &\mapsto \gamma(t) \end{aligned}$$

is smooth, and

$$V(\gamma_h) = \int_h^1 \sqrt{2} \frac{e^{-\frac{1}{t}}}{t^2} dt = \sqrt{2}(e^{-1} - e^{-\frac{1}{h}}). \quad (4.6)$$

Hence by 9.1.2 γ is rectifiable, and

$$V(\gamma) = \lim_{h \rightarrow 0^+} \int_h^1 \sqrt{2} \frac{e^{-\frac{1}{t}}}{t^2} dt = \sqrt{2}(e^{-1} - e^{-\frac{1}{h}}) = \frac{\sqrt{2}}{e}. \quad (4.7)$$

4.1.6 Exercise

4.1.7 Exercise

Since

$$\lim_{t \rightarrow 0} \gamma(t) = 0 = \gamma(0) \quad (4.8)$$

γ is a path.

Now, let

$$\begin{cases} t'_k = \frac{2}{(1+4k)\pi} & k \in \mathbb{N} \\ t''_k = \frac{2}{(3+4k)\pi} & k \in \mathbb{N} \end{cases} \quad (4.9)$$

and

$$P_N = [0, t''_N, t'_N, t''_{N-1}, t'_{N-1}, \dots, t''_0, t'_0, 1]. \quad (4.10)$$

Then

$$\begin{aligned} v(\gamma, P_N) &= |\gamma(t''_N) - \gamma(0)| + \sum_{k=0}^N |\gamma(t'_k) - \gamma(t''_k)| + \\ &\quad + \sum_{k=1}^N |\gamma(t''_{k-1}) - \gamma(t'_k)| + |\gamma(1) - \gamma(t'_0)| \geq \\ &\geq \sum_{k=0}^N \left| \gamma\left(\frac{2}{(1+4k)\pi}\right) - \gamma\left(\frac{2}{(3+4k)\pi}\right) \right| = \\ &= \sum_{k=0}^N \left| \frac{2}{(1+4k)\pi}(1+i) - \frac{2}{(3+4k)\pi}(1-i) \right| = \\ &= \sum_{k=0}^N \left| \frac{4}{(1+4k)(3+4k)\pi} + i \frac{8(1+2k)}{(1+4k)(3+4k)\pi} \right| \geq \\ &\geq \sum_{k=0}^N \frac{8(1+2k)}{(1+4k)(3+4k)\pi} \end{aligned}$$

and the last series diverges.

4.1.8 Exercise

4.1.9 Exercise

We have

$$\int_{\gamma} \frac{1}{z} dz = \int_0^{2\pi} \frac{in}{e^{int}} e^{int} dt = 2\pi in.$$

4.1.10 Exercise

We have

$$\int_{\gamma} z^n dz = i \int_0^{2\pi} e^{int} e^{it} dt = i \int_0^{2\pi} e^{i(n+1)t} dt.$$

If $n \neq -1$

$$\int_{\gamma} z^n dz = i \left[\frac{e^{i(n+1)t}}{(n+1)t} \right]_0^{2\pi} = 0.$$

If $n = -1$

$$\int_{\gamma} z^n dz = i [t]_0^{2\pi} = 2\pi i.$$

4.1.11 Exercise

Let

$$\begin{aligned}\gamma_1(t) &= 2it + 1 - i \\ \gamma_2(t) &= -2t + 1 + i \\ \gamma_3(t) &= -2it - 1 + i \\ \gamma_4(t) &= 2t - 1 - i.\end{aligned}$$

Then

$$\int_{\gamma} \frac{1}{z} dz = \sum_{j=1}^4 \int_{\gamma_j} \frac{1}{z} dz.$$

If \log is any branch of the logarithm defined on an open subset of \mathbb{C} containing the path on which each integral is to be calculated, we have

$$\begin{aligned}\int_{\gamma_1} \frac{1}{z} dz &= \int_0^1 \frac{2i}{2it + 1 - i} dt = [\log(2it + 1 - i)]_0^1 = \frac{\pi}{2}i \\ \int_{\gamma_2} \frac{1}{z} dz &= \int_0^1 \frac{-2}{-2t + 1 + i} dt = [\log(-2t + 1 + i)]_0^1 = \frac{\pi}{2}i \\ \int_{\gamma_3} \frac{1}{z} dz &= \int_0^1 \frac{-2i}{-2it - 1 + i} dt = [\log(-2it - 1 + i)]_0^1 = \frac{\pi}{2}i \\ \int_{\gamma_4} \frac{1}{z} dz &= \int_0^1 \frac{2}{2t - 1 - i} dt = [\log(2t - 1 - i)]_0^1 = \frac{\pi}{2}i\end{aligned}$$

so

$$\int_{\gamma} \frac{1}{z} dz = 2\pi i.$$

4.1.12 Exercise

We have

$$\begin{aligned}I(r) &= \int_0^{\pi} \frac{e^{ir e^{it}}}{r e^{it}} i r e^{it} dt = i \int_0^{\pi} e^{ir(\cos t + i \sin t)} dt = \\ &= i \int_0^{\pi} e^{-r \sin t} e^{ir \cos t} dt;\end{aligned}$$

then

$$\begin{aligned}|I(r)| &\leq \int_0^{\pi} |e^{-r \sin t} e^{ir \cos t}| dt = \int_0^{\pi} |e^{-r \sin t}| |e^{ir \cos t}| dt = \\ &= \int_0^{\pi} e^{-r \sin t} dt = \pi(e^{-\sin \bar{t}})^r\end{aligned}$$

for some $\bar{t} \in (0, \pi)$, whence $e^{-\sin \bar{t}} < 1$, and

$$\lim_{r \rightarrow +\infty} |I(r)| = 0. \tag{4.11}$$

4.1.13 Exercise

What is $z^{-\frac{1}{2}}$ supposed to mean? There is no way to define a branch of the logarithm on an open subset of \mathbb{C} in which both paths are contained. Let

$$\begin{aligned}D_1 &\left\{ z \in \mathbb{C} \mid \operatorname{Im}(z) \in \left(-\frac{\pi}{2}, \frac{3\pi}{2}\right) \right\} \\ D_2 &\left\{ z \in \mathbb{C} \mid \operatorname{Im}(z) \in \left(\frac{\pi}{2}, \frac{5\pi}{2}\right) \right\}.\end{aligned}$$

(a) If $\log' = \exp_{|D_1}^{-1}$ and $z^{-\frac{1}{2}} = \exp(-\frac{1}{2}\log'(z))$

$$\int_{\gamma} z^{-\frac{1}{2}} dz = i \int_0^{\pi} e^{\frac{1}{2}it} dt = 2 \left[e^{\frac{1}{2}it} \right]_0^{\pi} = 2 [i - 1].$$

(b) If $\log'' = \exp_{|D_2}^{-1}$ and $z^{-\frac{1}{2}} = \exp(-\frac{1}{2}\log''(z))$

$$\int_{\gamma} z^{-\frac{1}{2}} dz = i \int_0^{\pi} e^{-\frac{1}{2}it} dt = -2 \left[e^{-\frac{1}{2}it} \right]_0^{\pi} = 2 [i + 1].$$

But let

$$D_3 \left\{ z \in \mathbb{C} \mid \operatorname{Im}(z) \in \left(\frac{3\pi}{2}, \frac{7\pi}{2}\right) \right\}$$

$$D_4 \left\{ z \in \mathbb{C} \mid \operatorname{Im}(z) \in \left(\frac{5\pi}{2}, \frac{9\pi}{2}\right) \right\}.$$

(a) If $\log' = \exp_{|D_3}^{-1}$ and $z^{-\frac{1}{2}} = \exp(-\frac{1}{2}\log'(z))$

$$\int_{\gamma} z^{-\frac{1}{2}} dz = i \int_0^{\pi} e^{\frac{1}{2}it+\pi i} dt = -2 \left[e^{\frac{1}{2}it} \right]_0^{\pi} = -2 [i - 1].$$

(b) If $\log'' = \exp_{|D_4}^{-1}$ and $z^{-\frac{1}{2}} = \exp(-\frac{1}{2}\log''(z))$

$$\int_{\gamma} z^{-\frac{1}{2}} dz = i \int_0^{\pi} e^{-\frac{1}{2}it+\pi i} dt = 2 \left[e^{-\frac{1}{2}it} \right]_0^{\pi} = -2 [i + 1].$$

4.1.14 Exercise

4.1.15 Exercise

4.1.16 Exercise

4.1.17 Exercise

4.1.18 Exercise

4.1.19 Exercise

We have

$$\int_{\gamma} \frac{1}{z^2 - 1} dz = \frac{1}{2} \left[\int_{\gamma} \frac{1}{z-1} dz - \int_{\gamma} \frac{1}{z+1} dz \right].$$

The second integral yields 0 because for $t \in [0, 2\pi]$ the point $\gamma(t) + 1 = e^{it} + 2$ lies in the domain of a branch of the logarithm. Then

$$\int_{\gamma} \frac{1}{z^2 - 1} dz = \frac{i}{2} \int_0^{2\pi} \frac{e^{it}}{1 + e^{it} - 1} dt = \pi i.$$

4.1.20 Exercise

We have

$$\int_{\gamma} \frac{1}{z^2 - 1} dz = \frac{1}{2} \left[\int_{\gamma} \frac{1}{z-1} dz - \int_{\gamma} \frac{1}{z+1} dz \right].$$

Now

$$\int_{\gamma} \frac{1}{z-1} dz = \int_{-\pi}^{\pi} \frac{2ie^{it}}{2e^{it} - 1} dt = \int_{-\pi}^0 \frac{2ie^{it}}{2e^{it} - 1} dt + \int_0^{\pi} \frac{2ie^{it}}{2e^{it} - 1} dt$$

$$\int_{\gamma} \frac{1}{z+1} dz = \int_{-\pi}^{\pi} \frac{2ie^{it}}{2e^{it}+1} dt = \int_{-\pi}^0 \frac{2ie^{it}}{2e^{it}+1} dt + \int_0^{\pi} \frac{2ie^{it}}{2e^{it}+1} dt.$$

Letting

$$D_1 \left\{ z \in \mathbb{C} \mid \operatorname{Im}(z) \in \left(-\frac{3\pi}{2}, \frac{\pi}{2}\right) \right\}$$

$$D_2 \left\{ z \in \mathbb{C} \mid \operatorname{Im}(z) \in \left(-\frac{\pi}{2}, \frac{3\pi}{2}\right) \right\}$$

and $\log' = \exp_{|D_1}^{-1}$, $\log'' = \exp_{|D_2}^{-1}$, we have

$$\int_{-\pi}^0 \frac{2ie^{it}}{2e^{it}-1} dt = [\log'(2e^{it}-1)]_{-\pi}^0 = -\log'(-3) = -\log 3 + \pi i$$

$$\int_0^{\pi} \frac{2ie^{it}}{2e^{it}-1} dt = [\log''(2e^{it}-1)]_0^{\pi} = \log''(-3) = \log 3 + \pi i$$

$$\int_{-\pi}^0 \frac{2ie^{it}}{2e^{it}+1} dt = [\log'(2e^{it}+1)]_{-\pi}^0 = \log'(3) - \log'(-1) = \log 3 + \pi i$$

$$\int_0^{\pi} \frac{2ie^{it}}{2e^{it}+1} dt = [\log''(2e^{it}+1)]_0^{\pi} = \log''(-1) - \log''(3) = \pi i - \log 3.$$

Finally

$$\int_{\gamma} \frac{1}{z^2-1} dz = \frac{1}{2} [2\pi i + 2\pi i] = 2\pi i.$$

4.1.21 Exercise

Simply $(F_1 - F_2)' = 0$ implies $F_1 - F_2$ constant in G . We know that $F' = 0$ implies that F is constant also when F is only differentiable.

4.1.22 Exercise

For $n \geq 2$ let

$$f_n(z) = (z-a)^{-n}.$$

Then

$$f_n = \frac{f'_{n-1}}{1-n}$$

so each f_n has a primitive in G .

4.1.23 Exercise

We have

$$(fg)' = f'g + fg'$$

whence

$$\int_{\gamma} (fg)' dz = \int_{\gamma} f'g dz + \int_{\gamma} fg' dz$$

and

$$f(b)g(b) - f(a)g(a) = \int_{\gamma} f'g dz + \int_{\gamma} fg' dz.$$

4.2 Power series representation of analytic functions

4.2.1 Exercise

4.2.2 Exercise

4.2.3 Exercise

4.2.4 Exercise

4.2.5 Exercise

Actually Abel's Limit Theorem has a more general statement: see Ahlfors "Complex Analysis" 2.2.5 p. 42. To prove the given statement, let

$$S_n = \sum_{k=0}^n a_k$$

and for $|z| < 1$

$$f(z) = \sum_{k=0}^{+\infty} a_k z^k.$$

Then clearly

$$\lim_{n \rightarrow +\infty} S_n = A$$

and

$$\begin{aligned} \sum_{k=0}^n a_k x^k &= S_0 + \sum_{k=1}^n (S_k - S_{k-1}) x^k = S_0 + \sum_{k=1}^n S_k x^k - \sum_{k=1}^n S_{k-1} x^k = \\ &= \sum_{k=0}^{n-1} S_k x^k - \sum_{k=0}^{n-1} S_k x^{k+1} + S_n x^n = (1-x) \sum_{k=0}^{n-1} S_k x^k + S_n x^n \end{aligned}$$

whence, for $|x| < 1$

$$f(x) = (1-x) \sum_{k=0}^{+\infty} S_k x^k.$$

Now for any $\epsilon > 0$ there is $m \in \mathbb{N}$ such that $n \geq m$ implies $|S_n - A| < \epsilon$. Then, for $|x| < 1$

$$\begin{aligned}
 |f(x) - A| &= \left| (1-x) \sum_{k=0}^{+\infty} S_k x^k - A \right| = \\
 &= \left| (1-x) \sum_{k=0}^{+\infty} S_k x^k - A(1-x) \sum_{k=0}^{+\infty} x^k \right| = \\
 &= \left| (1-x) \sum_{k=0}^{+\infty} (S_k - A) x^k \right| = \\
 &= \left| (1-x) \left(\sum_{k=0}^{m-1} (S_k - A) x^k + \sum_{k=m}^{+\infty} (S_k - A) x^k \right) \right| \leq \\
 &\leq |1-x| \left(\left| \sum_{k=0}^{m-1} (S_k - A) x^k \right| + \left| \sum_{k=m}^{+\infty} (S_k - A) x^k \right| \right) = \\
 &= |1-x| \left(\left| \sum_{k=0}^{m-1} (S_k - A) x^k \right| + |x|^m \left| \sum_{k=m}^{+\infty} (S_k - A) x^{k-m} \right| \right) = \\
 &= |1-x| \left(\left| \sum_{k=0}^{m-1} (S_k - A) x^k \right| + |x|^m \left| \sum_{k=0}^{+\infty} (S_k - A) x^k \right| \right) \leq \\
 &\leq |1-x| \left(\left| \sum_{k=0}^{m-1} (S_k - A) x^k \right| + |x|^m \left| \frac{1}{1-x} \right| \epsilon \right) \leq \\
 &\leq |1-x| \left| \sum_{k=0}^{m-1} (S_k - A) x^k \right| + \epsilon
 \end{aligned}$$

whence for any $\epsilon > 0$

$$\lim_{x \rightarrow 0^-} |f(x) - A| \leq \epsilon$$

that is

$$\lim_{x \rightarrow 0^-} |f(x) - A| = 0.$$

4.2.6 Exercise

4.2.7 Exercise

(a) Using integration by parts

$$\int_{\gamma} \frac{e^{iz}}{z^2} dz = \frac{1}{2} \int_{\gamma} \frac{ie^{iz}}{z^{-1}} dz = \frac{2\pi i}{2} [ie^{iz}]_{z=0} = \pi i.$$

(b)

$$\int_{\gamma} \frac{1}{z-a} dz = 2\pi i [1]_{z=a} = 2\pi i.$$

(c) Using integration by parts twice

$$\int_{\gamma} \frac{\sin z}{z^3} dz = \frac{1}{2} \int_{\gamma} \frac{\cos z}{z^2} dz = -\frac{1}{6} \int_{\gamma} \frac{\sin z}{z} dz = -\frac{1}{6} 2\pi i [\sin z]_{z=0} = 0.$$

(d) Supposing \log is the principal branch of the logarithm, since the integrand function is analytic in $B(1; \frac{1}{2})$

$$\int_{\gamma} \frac{\log z}{z^n} dz = 0.$$

4.2.8 Exercise

4.2.9 Exercise

(a) Using integration by parts $n - 1$ times

$$\int_{\gamma} \frac{2 \sinh z}{z^n} dz = \frac{2}{n!} \begin{cases} \int_{\gamma} \frac{\sinh z}{z} dz & \text{if } n \text{ is odd} \\ \int_{\gamma} \frac{\cosh z}{z} dz & \text{if } n \text{ is even} \end{cases}$$

that is

$$\int_{\gamma} \frac{2 \sinh z}{z^n} dz = \frac{2}{n!} 2\pi i \begin{cases} [\sinh z]_{z=0} = 0 & \text{if } n \text{ is odd} \\ [\cosh z]_{z=0} = \frac{4\pi i}{n!} & \text{if } n \text{ is even} \end{cases}$$

(b) If $n > 1$ the integrand function has a primitive in $\mathbb{C} - \{\frac{1}{2}\}$, so the integral yields 0. If $n = 1$

$$\int_{\gamma} \frac{1}{(z - \frac{1}{2})} dz = 2\pi i [1]_{z=\frac{1}{2}} = 2\pi i.$$

(c)

$$\int_{\gamma} \frac{1}{z^2 + 1} dz = \frac{1}{2i} \left[\int_{\gamma} \frac{1}{z - i} dz - \int_{\gamma} \frac{1}{z + i} dz \right] = \pi[1 - 1] = 0.$$

(d)

$$\int_{\gamma} \frac{\sin z}{z} dz = 2\pi i [\sin z]_{z=0} = 0.$$

(e) Supposing

$$z^{\frac{1}{m}} = e^{\frac{1}{m} \log z}$$

where \log is the principal branch of the logarithm, then, using imtegration by parts $n - 1$ times

$$\begin{aligned} \int_{\gamma} \frac{z^{\frac{1}{m}}}{(z - 1)^m} dz &= \frac{(1 - m)(1 - 2m) \cdots (1 - (m - 2)m)}{m^{m-1} m!} \int_{\gamma} \frac{z^{\frac{1-(m-1)m}{m}}}{z - 1} dz = \\ &= \frac{(1 - m)(1 - 2m) \cdots (1 - (m - 2)m)}{m^{m-1} m!} 2\pi i \left[z^{\frac{1-(m-1)m}{m}} \right]_{z=1} = \\ &= \frac{(1 - m)(1 - 2m) \cdots (1 - (m - 2)m)}{m^{m-1} m!} 2\pi i. \end{aligned}$$

4.2.10 Exercise

We have

$$\int_{\gamma} \frac{z^2 + 1}{z(z^2 + 4)} dz = \frac{1}{4} \int_{\gamma} \frac{1}{z} dz + \frac{3}{8} \int_{\gamma} \frac{1}{z - 2i} dz + \frac{3}{8} \int_{\gamma} \frac{1}{z + 2i} dz$$

then

$$\int_{\gamma} \frac{z^2 + 1}{z(z^2 + 4)} dz = \begin{cases} \frac{\pi i}{2} & \text{if } r < 2 \\ 2\pi i & \text{if } r > 2 \end{cases}.$$

4.2.11 Exercise

If T is the Möbius transformation

$$T(z) = \frac{iz+1}{-iz+1}$$

we have

$$\begin{cases} T^{-1}(0) = i \\ T^{-1}(-1) = \infty \\ T^{-1}(\infty) = -i \end{cases}$$

so T maps the imaginary axis onto the real one, and the set $\{z \in \mathbb{C} \mid \Re(z) = 0 \wedge |\Im(z)| > 1\}$ onto the set $\{z \in \mathbb{C} \mid \Im(z) = 0 \wedge \Re(z) < 0\}$. So the domain of analyticity of f is

$$D = \mathbb{C} - \{z \in \mathbb{C} \mid \Re(z) = 0 \wedge |\Im(z)| > 1\}.$$

Furthermore

$$\tan(z) = \frac{1}{i} \frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}} = \frac{1}{i} \frac{e^{2iz} - 1}{e^{2iz} + 1}$$

so

$$\tan(f(z)) = \frac{1}{i} \frac{\frac{iz+1}{-iz+1} - 1}{\frac{iz+1}{-iz+1} + 1} = \frac{1}{i} \frac{1+iz-1+iz}{1+iz+1-iz} = z.$$

If $|z| < i$

$$\begin{cases} \log(1+iz) = \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k} i^k z^k \\ \log(1-iz) = \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k} (-i)^k z^k \end{cases}.$$

Now $\Re(1+iz) > 0$ and $\Re(1-iz) > 0$, whence $-\pi < \Im(\log(1+iz) - \log(1-iz)) < \pi$ which means that $\log(1+iz) - \log(1-iz)$ lies in the image of \log , and

$$\begin{aligned} \log(1+iz) - \log(1-iz) &= \log \left(\frac{1+iz}{1-iz} \right) = \\ &= \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k} (1 - (-1)^k) i^k z^k = \\ &= \sum_{k=0}^{+\infty} \frac{2}{2k+1} i^{2k+1} z^{2k+1} = \\ &= \sum_{k=0}^{+\infty} \frac{2}{2k+1} (-1)^k i z^{2k+1}. \end{aligned}$$

Finally

$$f(z) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1} z^{2k+1}.$$

4.2.12 Exercise

Since $\sec(z) = \cos(z)^{-1}$, \sec is an even function and its power series expansion has only even powers. Let

$$\sec(z) = \sum_{k=0}^{+\infty} \frac{E_{2k}}{(2k)!} z^{2k}.$$

Now $\cos(z) \sec(z) = 1$ yields $E_0 = 1$ and for $n \geq 1$

$$\sum_{k=0}^n \frac{(-1)^k}{(2k)!} \frac{E_{2(n-k)}}{(2(n-k))!} = 0$$

whence

$$\sum_{k=0}^n (-1)^k \frac{(2n)!}{(2k)!(2(n-k))!} E_{2(n-k)} = 0$$

that is

$$\sum_{k=0}^n (-1)^k \binom{2n}{2(n-k)} E_{2(n-k)} = 0.$$

Since the domain of \sec is $D = \mathbb{C} - \left\{ \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z} \right\}$ the radius of convergence of the series is $d(0, D) = \frac{\pi}{2}$.

4.2.13 Exercise

To be more accurate, define

$$g(z) = \begin{cases} \frac{e^z - 1}{z} & \text{if } z \neq 0 \\ 1 & \text{if } z = 0 \end{cases}.$$

Then

$$g(z) = \sum_{k=0}^{+\infty} \frac{z^k}{(k+1)!}.$$

Since g is defined everywhere, the radius of convergence of the last series is $+\infty$. Alternatively

$$\lim_{k \rightarrow +\infty} \sqrt[k]{\left| \frac{1}{(k+1)!} \right|} = 0.$$

In the same way define

$$f(z) = \begin{cases} \frac{z}{e^z - 1} & \text{if } z \neq 0 \\ 1 & \text{if } z = 0 \end{cases}.$$

Then $g(z)f(z) = 1$ for each $z \in \mathbb{C}$. Let

$$f(z) = \sum_{k=0}^{+\infty} \frac{a_k}{k!} z^k.$$

Since f is defined in $D = \mathbb{C} - \{2k\pi i, k \in \mathbb{Z}\}$, the last series has radius of convergence 2π . Since $g(z)f(z) = 1$

$$\sum_{k=0}^n \frac{a_k}{k!} \frac{1}{(n-k+1)!} = 0$$

or

$$\sum_{k=0}^n a_k \frac{(n+1)!}{k!(n-k+1)!} = \sum_{k=0}^n a_k \binom{n+1}{k} = 0.$$

Now

$$h(z) = f(z) + \frac{1}{2}z = \frac{1}{2} \frac{e^z + 1}{e^z - 1} z$$

and this is an even function, so

$$h(z) = \sum_{k=0}^{+\infty} \frac{a_k}{k!} z^k + \frac{1}{2}z = 1 + \left(a_1 + \frac{1}{2} \right) z + \sum_{k=2}^{+\infty} \frac{a_k}{k!} z^k$$

which yields

$$\begin{cases} a_1 = -\frac{1}{2} \\ a_{2k+1} = 0, \quad k > 0 \end{cases}.$$

4.2.14 Exercise

If

$$h(z) = \frac{1}{2} \frac{e^z + 1}{e^z - 1} z$$

we have

$$\cot(z) = i \frac{e^{2iz} + 1}{e^{2iz} - 1} = \frac{1}{z} \left(\frac{1}{2} \frac{e^{2iz} + 1}{e^{2iz} - 1} 2iz \right) = \frac{1}{z} h(2iz)$$

and

$$\begin{aligned} \tan(z) &= \cot(z) - 2 \cot(2z) = \frac{1}{z} h(2iz) - \frac{1}{z} h(4iz) = \\ &= \frac{1}{z} \left(\sum_{k=0}^{+\infty} \frac{a_{2k}}{(2k)!} (2iz)^{2k} - \sum_{k=0}^{+\infty} \frac{a_{2k}}{(2k)!} (4iz)^{2k} \right) = \\ &= \frac{1}{z} \left(\sum_{k=0}^{+\infty} \frac{a_{2k}}{(2k)!} ((2iz)^{2k} - (4iz)^{2k}) \right) = \\ &= \frac{1}{z} \left(\sum_{k=1}^{+\infty} \frac{a_{2k}}{(2k)!} (2i)^{2k} (1 - 2^{2k}) z^{2k} \right) = \\ &= \frac{1}{z} \left(\sum_{k=1}^{+\infty} \frac{a_{2k}}{(2k)!} (-1)^k 4^k (1 - 2^{2k}) z^{2k} \right) = \\ &= \sum_{k=0}^{+\infty} \frac{a_{2(k+1)}}{(2(k+1))!} (-1)^{k+1} 4^{k+1} (1 - 2^{2(k+1)}) z^{2k+1} = \\ &= \sum_{k=0}^{+\infty} \frac{B_{2(k+1)}}{(2(k+1))!} 4^{k+1} (1 - 2 \cdot 4^k) z^{2k+1}. \end{aligned}$$

4.3 Zeroes of an Analythic function

4.3.1 Exercise

Let

$$f(z) = \sum_{k=0}^{+\infty} a_k z^k.$$

Since

$$\frac{f(z)}{z^n} = \sum_{k=0}^{n-1} a_k z^{k-n} + \sum_{k=n}^{+\infty} a_k z^{k-n}$$

then if $|z| > R$

$$\left| \sum_{k=n}^{+\infty} a_k z^k \right| < \left| \frac{f(z)}{z^n} \right| + \sum_{k=0}^{n-1} |a_k| \frac{1}{R^{n-k}} \leq M + \sum_{k=0}^{n-1} |a_k| \frac{1}{R^{n-k}}.$$

This implies that

$$\sum_{k=0}^{+\infty} a_{n+k} z^k$$

is a constant, that is, $a_{n+k} = 0$ if $k > 0$, and

$$f(z) = \sum_{k=0}^n a_k z^k.$$

4.3.2 Exercise

Let

$$G_1 = \{z \in \mathbb{C} \mid |z + 2| < 1\}$$

$$G_2 = \{z \in \mathbb{C} \mid |z - 2| < 1\}$$

$G = G_1 \cup G_2$ and $f : G \rightarrow \mathbb{C}$ defined by

$$f(z) = \begin{cases} 0 & \text{if } z \in G_1 \\ 1 & \text{if } z \in G_2 \end{cases}.$$

4.3.3 Exercise

Let f, g be entire functions such that $f(x) = e^x$ and $g(x) = e^x$ if $x \in \mathbb{R}$. Then the set

$$\{z \in \mathbb{C} \mid f(z) = g(z)\}$$

has a limit point in \mathbb{C} so $f = g$.

4.3.4 Exercise

4.3.5 Exercise

4.3.6 Exercise

4.3.7 Exercise

4.3.8 Exercise

4.3.9 Exercise

4.3.10 Exercise

The function

$$\frac{\bar{f}g}{g}$$

is analytic where $g \neq 0$, and so is \bar{f} , which is impossible.

4.4 The index of a closed curve

4.4.1 Exercise

4.4.2 Exercise

For each $k \in \mathbb{N}^+$ define the map

$$\begin{aligned} \alpha_k^1 : \left[\frac{1}{k+1}, \frac{1}{k} \right] &\rightarrow [-\pi, \pi] \\ t &\mapsto \pi[2k(k+1)t - 2k - 1] \end{aligned}$$

and the path with the same domain

$$\gamma_k^1(t) = \frac{1}{4^k} \left(e^{i\alpha_k^1(t)} + 1 \right).$$

Clearly

$$V(\gamma_k^1) = \frac{\pi}{2^{k-1}}$$

$$\gamma_k^1\left(\frac{1}{k}\right) = 0$$

$$\gamma_k^1\left(\frac{1}{k+1}\right) = 0$$

so the path $\gamma^1 : [0, 1] \rightarrow \mathbb{C}$ defined by

$$\gamma^1(t) = \begin{cases} \gamma_k^1(t) & \text{if } t \in \left(\frac{1}{k+1}, \frac{1}{k}\right] \\ 0 & \text{if } t = 0 \end{cases} \quad k \in \mathbb{N}$$

is continuous, and

$$\sum_{k=0}^{+\infty} V(\gamma_k^1)$$

converges. By Proposition 9.1.3 γ^1 is a rectifiable path.

In the same way for each $k \in \mathbb{N}^+$ define the map

$$\begin{aligned} \alpha_k^2 : \left[-\frac{1}{k}, -\frac{1}{k+1}\right] &\rightarrow [0, 2\pi] \\ t &\mapsto -\pi[2k(k+1)t + 2k] \end{aligned}$$

and the path with the same domain

$$\gamma_k^2(t) = \frac{1}{4^k} \left(e^{i\alpha_k^2(t)} - 1 \right)$$

so the path $\gamma^2 : [-1, 0] \rightarrow \mathbb{C}$ defined by

$$\gamma^2(t) = \begin{cases} \gamma_k^2(t) & \text{if } t \in \left[-\frac{1}{k}, -\frac{1}{k+1}\right) \\ 0 & \text{if } t = 0 \end{cases} \quad k \in \mathbb{N}$$

is continuous and rectifiable. Let $\gamma : [-1, 1] \rightarrow \mathbb{C}$ defined by

$$\gamma(t) = \begin{cases} \gamma^1(t) & \text{if } t \in [0, 1] \\ \gamma^2(t) & \text{if } t \in [-1, 0]. \end{cases}$$

Let

$$p_h^1 = \left(\frac{1}{4^h}, 0\right) \quad h \in \mathbb{N}$$

$$p_h^2 = \left(-\frac{1}{4^h}, 0\right) \quad h \in \mathbb{N}.$$

Again by Proposition 9.1.3

$$n(\gamma; p_h^1) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{p_h^1 - z} dz = \sum_{k=1}^{+\infty} \int_{\gamma_k^1} \frac{1}{p_h^1 - z} dz + \sum_{k=1}^{+\infty} \int_{\gamma_k^2} \frac{1}{p_h^1 - z} dz.$$

that is

$$n(\gamma; p_h^1) = \sum_{k=1}^{+\infty} n(\gamma_k^1; p_h^1) + \sum_{k=1}^{+\infty} n(\gamma_k^2; p_h^1).$$

Since clearly p_h^1 belongs to the unbounded component of $\mathbb{C} - \{\gamma_k^2\}$ for all k , to the unbounded component of $\mathbb{C} - \{\gamma_k^1\}$ if $k > h$ and to the only one bound component of $\mathbb{C} - \{\gamma_k^1\}$ if $k \leq h$, then $n(\gamma; p_h^1) = k$. Similarly $n(\gamma; p_h^2) = -k$.

4.4.3 Exercise

Let

$$p(z) = a \prod_{k=1}^n (z - z_k)$$

where $|z_k| < R$, $k = 1 \dots n$. Then

$$p'(z) = a \sum_{k=1}^n \prod_{h \neq k} (z - z_h)$$

so

$$\frac{p'(z)}{p(z)} = \sum_{k=1}^n \frac{1}{z - z_k}$$

and

$$\int_{\gamma} \frac{p'(z)}{p(z)} dz = \int_{\gamma} \sum_{k=1}^n \frac{1}{z - z_k} dz = 2\pi i n.$$

4.4.4 Exercise

Let

$$\begin{aligned} \sigma_1 : [0, 1] &\rightarrow \mathbb{C} \\ t &\mapsto (1 + (r - 1)t)e^{i\theta} \end{aligned}$$

and

$$\begin{aligned} \sigma_2 : [0, 1] &\rightarrow \mathbb{C} \\ t &\mapsto e^{it\theta} \end{aligned}$$

Then there is an integer k such that

$$\int_{\gamma} \frac{1}{z} dz + \int_{-\sigma_1} \frac{1}{z} dz + \int_{-\sigma_2} \frac{1}{z} dz = 2k\pi i$$

whence

$$\begin{aligned} \int_{\gamma} \frac{1}{z} dz &= \int_0^1 \frac{r-1}{1 + (r-1)t} dt + i \int_0^1 \theta dt + 2k\pi i = \\ &= [\log(1 + (r-1)t)]_0^1 + [i\theta]_0^1 + 2k\pi i = \log r + i\theta + 2k\pi i. \end{aligned}$$

4.5 Cauchy's Theorem and Integral Formula

4.5.1 Exercise

In every point $(v, w) \in G \times G$ such that $v \neq w$ the function φ is clearly continuous.

Let r be such that $\bar{B}(w, r) \subseteq G$. If $u, v \in B(w, r/4)$ then $u \in B(v, r/2)$ and $B(v, r/2) \subseteq B(w, r)$. So f is analytic in $B(v, r/2)$ and

$$f(u) - f(v) = (u - v) \sum_{k=1}^{+\infty} \frac{f^{(k)}(v)}{k!} (u - v)^{k-1} = (u - v) f'(v) + (u - v)^2 \sum_{k=2}^{+\infty} \frac{f^{(k)}(v)}{k!} (u - v)^{k-2}$$

whence if $u \neq v$ and $(u, v) \neq (w, w)$

$$\begin{aligned} \left| \frac{f(u) - f(v)}{u - v} - f'(w) \right| &= \left| f'(v) + (u - v) \sum_{k=2}^{+\infty} \frac{f^{(k)}(v)}{k!} (u - v)^{k-2} - f'(w) \right| \\ &\leq \left| f'(v) - f'(w) \right| + |u - v| \left| \sum_{k=2}^{+\infty} \frac{f^{(k)}(v)}{k!} (u - v)^{k-2} \right|. \end{aligned}$$

Now if $|f(z)| \leq M$ in $B(w, r)$ also $|f(z)| \leq M$ holds in $B(v, r/2)$ for any v in $B(w, r/4)$, then by Cauchy's Estimate

$$\left| f^{(k)}(v) \right| \leq \frac{k! M 2^k}{r^k}$$

for any v in $B(w, r/4)$. It follows that

$$\left| \sum_{k=2}^{+\infty} \frac{f^{(k)}(v)}{k!} (u-v)^{k-2} \right| \leq M \sum_{k=2}^{+\infty} \frac{2^k |u-v|^{k-2}}{r^k} = \frac{4M}{r^2} \sum_{k=0}^{+\infty} \left(\frac{2|u-v|}{r} \right)^k$$

and, since $|u-v| < r/2$

$$\left| \sum_{k=2}^{+\infty} \frac{f^{(k)}(v)}{k!} (u-v)^{k-2} \right| \leq \frac{4M(r-2|u-v|)}{r}.$$

Eventually

$$\left| \frac{f(u) - f(v)}{u-v} - f'(w) \right| \leq \left| f'(v) - f'(w) \right| + |u-v| \frac{4M(r-2|u-v|)}{r}.$$

So if $\epsilon > 0$ there is δ_1 such that for any (u, v) such that $u \neq v$, $(u, v) \neq (w, w)$ and $\sqrt{(u-w)^2 + (v-w)^2} < \delta_1$ the inequality $|\varphi(u, v) - \varphi(w, w)| < \epsilon$ holds.

Since f' is a continuous function there is δ_2 such that for any (u, u) such that $(u, u) \neq (w, w)$ and $\sqrt{(u-w)^2 + (u-w)^2} = \sqrt{2}|u-w| < \delta_2$ the inequality $|\varphi(u, u) - \varphi(w, w)| = \left| f'(u) - f'(v) \right| < \epsilon$ holds.

If $\delta = \min \{\delta_1, \delta_2\}$ then $(u, v) \neq (w, w)$ and $\sqrt{(u-w)^2 + (v-w)^2} < \delta$ implies $|\varphi(u, v) - \varphi(w, w)| < \epsilon$.

For $z \in G$ let

$$\varphi_v(z) = \varphi(z, v).$$

Clearly φ_v is analytic for any $u \in G$ such that $u \neq v$. Let r be such that $B(v, r) \subseteq G$. For $z \neq v$ and $|z-v| < r$

$$\begin{aligned} \frac{\varphi_v(z) - \varphi_v(z)}{z-v} &= \frac{1}{z-v} \left(\frac{f(z) - f(v)}{z-v} - f'(v) \right) = \frac{1}{z-v} \left(\sum_{k=1}^{+\infty} \frac{f^{(k)}(v)}{k!} (z-v)^{k-1} - f'(v) \right) = \\ &= \frac{1}{z-v} \left(\sum_{k=2}^{+\infty} \frac{f^{(k)}(v)}{k!} (z-v)^{k-1} \right) = \sum_{k=2}^{+\infty} \frac{f^{(k)}(v)}{k!} (z-v)^{k-2} \end{aligned}$$

whence

$$\lim_{z \rightarrow v} \frac{\varphi_v(z) - \varphi_v(z)}{z-v} = \frac{f''(v)}{2}.$$

If $z \neq v$

$$\begin{aligned} \varphi'(z) &= \frac{f'(z)(z-v) - (f(z) - f(v))}{(z-v)^2} = \\ &= \frac{f'(z)(z-v) - f'(v)(z-v) - \frac{f''(v)}{2}(z-v)^2 - \sum_{k=3}^{+\infty} \frac{f^{(k)}(v)}{k!} (z-v)^k}{(z-v)^2} = \\ &= \frac{f'(z) - f'(v)}{z-v} - \frac{f''(v)}{2} - \sum_{k=3}^{+\infty} \frac{f^{(k)}(v)}{k!} (z-v)^{k-2} \end{aligned}$$

so

$$\lim_{z \rightarrow v} \varphi'(z) = \frac{f''(v)}{2} = \varphi'(v).$$

NB Remember we still don't know that a derivable function is analytic.

4.5.2 Exercise

4.5.3 Exercise

Chapter 5

Singularities

5.1 Classification of singularities

5.2 Residues $r_2 - r_1$

5.2.1 Exercise

(a) $(h, 0)$

The polynomial $z^4 + z^2 + 1$ has roots $r_1 = e^{i\frac{\pi}{3}}$, $r_2 = e^{i\frac{2\pi}{3}}$, $r_3 = e^{i\frac{4\pi}{3}}$, $r_4 = e^{i\frac{5\pi}{3}}$. The residues of the function

$$f(z) = \frac{z^2}{z^4 + z^2 + 1}$$

are

$$\begin{aligned} \text{res}(f, r_1) &= \frac{\sqrt{3} - i}{4\sqrt{3}} \\ \text{res}(f, r_2) &= \frac{-\sqrt{3} - i}{4\sqrt{3}}. \end{aligned}$$

Let $h > 1$ and

$$\begin{aligned} \gamma_h : [0, \pi] &\rightarrow \mathbb{C} \\ t &\mapsto he^{it} \\ \sigma_h : [-h, h] &\rightarrow \mathbb{C} \\ t &\mapsto t. \end{aligned}$$

Then

$$\int_{\gamma_h + \sigma_h} f(z) dz = 2\pi i (\text{res}(f, r_1) + \text{res}(f, r_2)) = \frac{\pi\sqrt{3}}{3}.$$

For the integral on γ_h we have

$$\left| \int_{\gamma_h} \frac{z^2}{z^4 + z^2 + 1} dz \right| = \left| i \int_0^\pi \frac{h^3 e^{3it}}{h^4 e^{4it} + h^2 e^{2it} + 1} dt \right| \leq \int_0^\pi \frac{h^3}{|h^4 e^{4it} + h^2 e^{2it} + 1|} dt.$$

Now

$$|h^4 e^{4it} + h^2 e^{2it} + 1| = |h^2 e^{2it} (h^2 e^{2it} + 1) + 1| \geq |h^2| |h^2 e^{2it} + 1| - 1|$$

in turn, since $h > 1$

$$|h^2 e^{2it} + 1| \geq h^2 - 1$$

and if $h > \sqrt{2}$

$$h^2 |h^2 e^{2it} + 1| \geq 1$$

so

$$|h^2 |h^2 e^{2it} + 1| - 1| = h^2 |h^2 e^{2it} + 1| - 1 \geq h^2(h^2 - 1) - 1.$$

Going back to the integral we have

$$\left| \int_{\gamma_h} \frac{z^2}{z^4 + z^2 + 1} dz \right| \leq \int_0^\pi \frac{h^3}{h^2(h^2 - 1) - 1} dt = \frac{h^3 \pi}{h^2(h^2 - 1) - 1}$$

that is

$$\lim_{h \rightarrow +\infty} \int_{\gamma_h} \frac{z^2}{z^4 + z^2 + 1} dz = 0.$$

This yields

$$\lim_{h \rightarrow +\infty} \int_{\sigma_h} \frac{z^2}{z^4 + z^2 + 1} dz = \frac{\pi \sqrt{3}}{3}.$$

But

$$\int_{\sigma_h} \frac{z^2}{z^4 + z^2 + 1} dz = \int_{-h}^h \frac{t^2}{t^4 + t^2 + 1} dt = 2 \int_0^h \frac{t^2}{t^4 + t^2 + 1} dt$$

which finally yields

$$\int_0^{+\infty} \frac{t^2}{t^4 + t^2 + 1} dt = \frac{\pi \sqrt{3}}{6}.$$

(b) To calculate this integral we don't need the residues. Provided we already know that

$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

In fact, for $0 < a < b$

$$\int_a^b \frac{\cos x - 1}{x^2} dx = \left[-\frac{\cos x - 1}{x} \right]_a^b - \int_a^b \frac{\sin x}{x} dx$$

so

$$\int_0^\pi \frac{\cos x - 1}{x^2} dx = \left[-\frac{\cos x - 1}{x} \right]_0^\pi - \int_0^\pi \frac{\sin x}{x} dx = \frac{2}{\pi} - \int_0^\pi \frac{\sin x}{x} dx,$$

$$\int_\pi^{+\infty} \frac{\cos x - 1}{x^2} dx = \left[-\frac{\cos x - 1}{x} \right]_\pi^{+\infty} - \int_\pi^{+\infty} \frac{\sin x}{x} dx = -\frac{2}{\pi} - \int_\pi^{+\infty} \frac{\sin x}{x} dx,$$

and

$$\int_0^{+\infty} \frac{\cos x - 1}{x^2} dx = - \int_0^{+\infty} \frac{\sin x}{x} dx = -\frac{\pi}{2}.$$

(c) If $a = 0$ then

$$\int_0^\pi \frac{\cos 2\theta}{1 - 2a \cos \theta + a^2} d\theta = \int_0^\pi \cos 2\theta d\theta = 0$$

so suppose $a \neq 0$.

If $z = e^{i\theta}$ then $z^{-1} = e^{-i\theta}$, so

$$\cos \theta = \frac{1}{2} \left(z + \frac{1}{z} \right)$$

and

$$\cos 2\theta = \frac{1}{2} \left(z^2 + \frac{1}{z^2} \right).$$

Hence, if $|z| = 1$

$$\frac{\cos 2\theta}{1 - 2a \cos \theta + a^2} = -\frac{1}{2} \frac{z^4 + 1}{z(az^2 - (1 + a^2)z + a)}$$

so if

$$\begin{aligned}\gamma : [0, 1] &\rightarrow \mathbb{C} \\ t &\mapsto e^{it}\end{aligned}$$

we have

$$\int_0^\pi \frac{\cos 2\theta}{1 - 2a \cos \theta + a^2} d\theta = -\frac{1}{4i} \int_\gamma \frac{z^4 + 1}{z^2(az^2 - (1 + a^2)z + a)} dz.$$

The integrand function f has simple poles in a and $1/a$ and a double pole in 0. If $a^2 < 1$ only 0 and a lie in the interior of γ , and

$$\begin{aligned}\text{res}(f, 0) &= \frac{1 + a^2}{a^2} \\ \text{res}(f, a) &= \frac{1 + a^4}{a^2(a^2 - 1)}.\end{aligned}$$

Eventually

$$\int_0^\pi \frac{\cos 2\theta}{1 - 2a \cos \theta + a^2} d\theta = -\frac{\pi}{2} (\text{res}(f, 0) + \text{res}(f, a)) = \frac{\pi a^2}{1 - a^2}.$$

(d) If $|z| = 1$ we have

$$\frac{1}{(a + \cos \theta)^2} = \frac{4z^2}{(2az + z^2 + 1)}$$

so if

$$\begin{aligned}\gamma : [0, \pi] &\rightarrow \mathbb{C} \\ t &\mapsto e^{it}\end{aligned}$$

we have

$$\int_0^\pi \frac{1}{(a + \cos \theta)^2} d\theta = \frac{1}{2i} \int_\gamma \frac{4z}{(2az + z^2 + 1)} dz.$$

The integrand function f has double poles in $-a \pm \sqrt{a^2 - 1}$, but only $-a + \sqrt{a^2 - 1}$ lies in the interior of γ , and

$$\text{res}(f, -a + \sqrt{a^2 - 1}) = \frac{a}{\sqrt{a^2 - 1}^3}$$

so

$$\int_0^\pi \frac{1}{(a + \cos \theta)^2} d\theta = \frac{\pi a}{\sqrt{a^2 - 1}^3}.$$

5.2.2 Exercise

(a) Let

$$\begin{aligned}\gamma_h : [0, \pi] &\rightarrow \mathbb{C} \\ t &\mapsto he^{it}\end{aligned}$$

and

$$\begin{aligned}\delta_h : [-h, h] &\rightarrow \mathbb{C} \\ t &\mapsto t\end{aligned}$$

The function

$$f(z) = \frac{1}{(z^2 + a^2)^2}$$

has double poles in $\pm ia$, and

$$\text{res}(f, ia) = \frac{1}{4ia^3}.$$

Then if $h > a$

$$2 \int_0^h \frac{1}{(t^2 + a^2)^2} dt + i \int_0^\pi \frac{he^{it}}{(h^2 e^{2it} + a^2)^2} dt = \int_{\gamma_h + \delta_h} \frac{1}{(z^2 + a^2)^2} dz = \frac{\pi}{2a^3}.$$

But

$$\left| \frac{he^{it}}{(h^2 e^{2it} + a^2)^2} \right| = \frac{h}{|h^2 e^{2it} + a^2|^2} \leq \frac{h}{|h^2 e^{2it} - a^2|^2} = \frac{h}{(h^2 - a^2)^2}$$

so

$$\lim_{h \rightarrow +\infty} \int_0^\pi \frac{he^{it}}{(h^2 e^{2it} + a^2)^2} dt = 0$$

and

$$\lim_{h \rightarrow +\infty} \int_0^h \frac{1}{(t^2 + a^2)^2} dt = \frac{\pi}{4a^3}.$$

(b) Let $h > 1$. Then

$$\begin{aligned} \int_{1/h}^h \frac{(\log x)^3}{1 + x^2} dx &= \int_{1/h}^1 \frac{(\log x)^3}{1 + x^2} dx + \int_1^h \frac{(\log x)^3}{1 + x^2} dx = \\ &= \int_h^1 \frac{\left(\log \frac{1}{x}\right)^3}{1 + \left(\frac{1}{x}\right)^2} \left(-\frac{1}{x^2}\right) dx + \int_1^h \frac{(\log x)^3}{1 + x^2} dx = \\ &= - \int_h^1 \frac{(-\log x)^3}{1 + x^2} dx + \int_1^h \frac{(\log x)^3}{1 + x^2} dx = \\ &= - \int_1^h \frac{(\log x)^3}{1 + x^2} dx + \int_1^h \frac{(\log x)^3}{1 + x^2} dx = 0. \end{aligned}$$

This imply

$$\int_0^{+\infty} \frac{(\log x)^3}{1 + x^2} dx = 0$$

since

$$\int_1^{+\infty} \frac{(\log x)^3}{1 + x^2} dx$$

converges, because there is K such that for $x > K$

$$\frac{(\log x)^3}{x} < 1$$

whence for $x > K$

$$\frac{(\log x)^3}{1 + x^2} < \frac{1}{1 + x^2}.$$

(c) $\int_0^h \frac{\cos(at)}{(1+t^2)^2} dt = \int_0^h \frac{e^{iat} + e^{-iat}}{2(1+t^2)^2} dt = \int_{-h}^h \frac{e^{iat}}{2(1+t^2)^2} dt.$

For $h > 0$ let

$$\begin{aligned}\gamma_h : [-h, h] &\rightarrow \mathbb{C} \\ t &\mapsto t\end{aligned}$$

and

$$\begin{aligned}\sigma_h : [0, \pi] &\rightarrow \mathbb{C} \\ t &\mapsto he^{it}.\end{aligned}$$

If $h > 1$ the function

$$f(z) = \frac{e^{iaz}}{(1+z^2)^2}$$

has a double pole in i inside the closed curve $\gamma_h + \delta_h$, and

$$\text{res}(f, i) = -\frac{ie^{-a}(a+1)}{4}.$$

Furthermore

$$\int_{\sigma_h} f(z) dz = \int_0^\pi \frac{e^{ihae^{it}}}{2(1+h^2e^{i2t})^2} ihe^{it} dt$$

and, if $h > 1$

$$\left| \frac{e^{ihae^{it}}}{2(1+h^2e^{i2t})^2} ihe^{it} \right| = \frac{e^{-ha \sin t}}{2|1+h^2e^{i2t}|^2} h \leq \frac{h}{2|h^2-1|^2}$$

so

$$\lim_{h \rightarrow +\infty} \int_{\sigma_h} f(z) dz = 0$$

and

$$\int_0^{+\infty} \frac{\cos(at)}{(1+t^2)^2} dt = 2\pi i \text{res}(f, i) = \frac{\pi e^{-a}(a+1)}{2}.$$

(d) If $z = e^{i\theta}$

$$\frac{1}{a + \sin^2 \theta} = -\frac{4z^2}{z^4 - 2(2a+1) + 1}$$

so if

$$\begin{aligned}\gamma : [0, \pi] &\rightarrow \mathbb{C} \\ t &\mapsto e^{it}\end{aligned}$$

we have

$$\int_0^{\frac{\pi}{2}} \frac{1}{a + \sin^2 \theta} d\theta = \frac{1}{4} \int_0^{2\pi} \frac{1}{a + \sin^2 \theta} d\theta = -\frac{1}{4i} \int_{\gamma} \frac{4z}{z^4 - 2(2a+1) + 1} dz.$$

Since $a > 0$ the integrand function f has double poles in the real points $\pm\sqrt{2a+1 \pm 2\sqrt{a(a+1)}}$; now $2a+1 - 2\sqrt{a(a+1)} \in (0, 1)$ while $2a+1 + 2\sqrt{a(a+1)} > 1$, so

$$\begin{aligned}\int_{\gamma} \frac{4z}{z^4 - 2(2a+1) + 1} dz &= \\ &= 2\pi i \left(\text{res} \left(f, -\sqrt{2a+1 - 2\sqrt{a(a+1)}} \right) + \text{res} \left(f, \sqrt{2a+1 + 2\sqrt{a(a+1)}} \right) \right) = \\ &= 2\pi i \left(-\frac{1}{\sqrt{a(a+1)}} \right) = \left(-\frac{2\pi i}{\sqrt{a(a+1)}} \right)\end{aligned}$$

and

$$\int_0^{\frac{\pi}{2}} \frac{1}{a + \sin^2 \theta} d\theta = -\frac{1}{4i} \left(-\frac{2\pi i}{\sqrt{a(a+1)}} \right) = \frac{\pi}{2\sqrt{a(a+1)}}.$$

(e) $\frac{1/h}{h}$

Let

$$S = \left\{ z \in \mathbb{C} \mid -\frac{\pi}{2} < \operatorname{Im} z < \frac{2\pi}{3} \right\}$$

and

$$\log^* = \exp_{|S|}^{-1}$$

The function

$$f(z) = \frac{\log^*(z)}{(1+z^2)^2}$$

has double poles in $\pm i$, and

$$\operatorname{res}(f, i) = \frac{2i + \pi}{8}.$$

Let $h > 1$ and

$$\begin{aligned} \alpha_h : (0, \pi) &\rightarrow \mathbb{C} \\ t &\mapsto \frac{1}{h} e^{i(\pi-t)} \end{aligned}$$

$$\begin{aligned} \beta_h : (1/h, h) &\rightarrow \mathbb{C} \\ t &\mapsto t \end{aligned}$$

$$\begin{aligned} \gamma_h : (0, \pi) &\rightarrow \mathbb{C} \\ t &\mapsto h e^{it} \end{aligned}$$

$$\begin{aligned} \delta_h : (-h, -1/h) &\rightarrow \mathbb{C} \\ t &\mapsto t \end{aligned}$$

and $\Gamma = \alpha + \beta + \gamma + \delta$. Then

$$\int_{\Gamma} f(z) dz = \frac{-2\pi + \pi^2 i}{4}.$$

For the integral on α_h :

$$\int_{\alpha_h} f(z) dz = -i \int_0^{\pi} \frac{-\log h + i(\pi-t)}{\left(1 + \frac{1}{h^2} e^{2(\pi-t)i}\right)^2} \frac{1}{h} e^{2(\pi-t)i} dt$$

and

$$\left| \int_{\alpha_h} f(z) dz \right| \leq \int_0^{\pi} \frac{\log h + \pi}{\left|1 + \frac{1}{h^2} e^{2(\pi-t)i}\right|^2 h} dt \leq \int_0^{\pi} \frac{\log h + \pi}{\left|1 - \frac{1}{h^2}\right|^2 h} dt = \frac{(\log h + \pi)\pi}{\left|1 - \frac{1}{h^2}\right|^2 h}$$

so

$$\lim_{h \rightarrow +\infty} \int_{\alpha_h} f(z) dz = 0.$$

For the integral on β_h :

$$\int_{\beta_h} f(z) dz = \int_{1/h}^h \frac{\log t}{(1+t^2)^2} dt.$$

For the integral on γ_h :

$$\int_{\gamma_h} f(z) dz = \int_0^\pi \frac{\log h + it}{(1 + h^2 e^{2it})^2} h e^{it} dt$$

and

$$\left| \int_{\gamma_h} f(z) dz \right| \leq \int_0^\pi \frac{\log h + t}{|1 + h^2 e^{2it}|^2} h dt \leq \int_0^\pi \frac{\log h + \pi}{|h^2 - 1|^2} h dt \leq \frac{(\log h + \pi)\pi}{|h^2 - 1|^2} h$$

so

$$\lim_{h \rightarrow +\infty} \int_{\gamma_h} f(z) dz = 0.$$

For the integral on δ_h :

$$\begin{aligned} \int_{\delta_h} f(z) dz &= \int_{-h}^{-1/h} \frac{\log |t| + i\pi}{(1 + t^2)^2} dt = \int_{1/h}^h \frac{\log t}{(1 + t^2)^2} dt + \int_{1/h}^h \frac{i\pi}{(1 + t^2)^2} dt = \\ &= \int_{1/h}^h \frac{\log t}{(1 + t^2)^2} dt + \frac{i\pi}{2} \left[\frac{t^2}{1 + t^2} + \arctan t \right]_{1/h}^h = \\ &= \int_{1/h}^h \frac{\log t}{(1 + t^2)^2} dt + \frac{i\pi}{2} \left[\arctan(h) - \arctan\left(\frac{1}{h}\right) \right]. \end{aligned}$$

Eventually

$$\lim_{h \rightarrow +\infty} \left(2 \int_{1/h}^h \frac{\log t}{(1 + t^2)^2} dt + \frac{i\pi}{2} \left[\arctan(h) - \arctan\left(\frac{1}{h}\right) \right] \right) = \frac{-2\pi + \pi^2 i}{4}$$

and

$$\lim_{h \rightarrow +\infty} \int_{1/h}^h \frac{\log t}{(1 + t^2)^2} dt = -\frac{\pi}{4}.$$

5.3 The Argument Principle

5.3.1 Exercise

5.3.2 Exercise

If $|z| = 1$

$$|f(z) - z^n + z^n| = |f(z)| < 1 \leq |f(z) - z^n| + 1 = |f(z) - z^n| + |z^n|$$

so by Rouché's Theorem V.3.8 $f(z) - z^n$ and z^n have the same number of zeroes, counting multiplicities, in $B(0, 1)$, that is, $f(z) = z^n$ has n solutions, counting multiplicities, in $B(0, 1)$.

Part II

Notes

Chapter 6

The Complex Number System

6.2 The field of complex numbers

2.2 – Since

$$z = \Re(z) + i \Im(z) \quad (6.1)$$

we have

$$\bar{z} = \Re(z) - i \Im(z) \quad (6.2)$$

hence

$$\begin{aligned} z + \bar{z} &= 2 \Re(z) \\ z - \bar{z} &= 2i \Im(z). \end{aligned}$$

2.3 – We have

$$\begin{aligned} \overline{z+w} &= \overline{\Re(z) + i \Im(z) + \Re(w) + i \Im(w)} \\ &= \overline{(\Re(z) + \Re(w)) + i(\Im(z) + \Im(w))} \\ &= (\Re(z) + \Re(w)) - i(\Im(z) + \Im(w)) \\ &= (\Re(z) - i \Im(z)) + (\Re(w) - i \Im(w)) \\ &= \bar{z} + \bar{w} \end{aligned}$$

and

$$\begin{aligned} \overline{zw} &= \overline{(\Re(z) \Re(w) - \Im(z) \Im(w)) + i(\Re(z) \Im(w) + \Im(z) \Re(w))} \\ &= (\Re(z) \Re(w) - \Im(z) \Im(w)) - i(\Re(z) \Im(w) + \Im(z) \Re(w)) \\ &= (\Re(z) - i \Im(z))(\Re(w) - i \Im(w)) \\ &= \bar{z} \bar{w}. \end{aligned}$$

2.4 – We have

$$\begin{aligned} |zw|^2 &= (zw)(\bar{z}\bar{w}) \\ &= (zw)(\bar{z}\bar{w}) \\ &= (z\bar{z})(w\bar{w}) \\ &= |z|^2 |w|^2 \\ &= (|z||w|)^2 \end{aligned}$$

hence

$$|zw| = |z||w|.$$

2.5 – We have

$$\left| \frac{1}{z} \right| |z| = \left| \frac{1}{z} z \right| = |1| = 1 \quad (6.3)$$

hence

$$\left| \frac{1}{z} \right| = \frac{1}{|z|} \quad (6.4)$$

and

$$\left| \frac{z}{w} \right| = |z| \left| \frac{1}{w} \right| = \frac{|z|}{|w|}. \quad (6.5)$$

2.6 – We have

$$|\bar{z}|^2 = \bar{z} \overline{(\bar{z})} = \bar{z}z = |z|^2 \quad (6.6)$$

hence

$$|\bar{z}| = |z|. \quad (6.7)$$

Chapter 7

Metric Spaces and the Topology of \mathbb{C}

7.2 Connectedness

Proof of Proposition 2.8

Proof.

- (a) If B is not connected, then it has more than one component. Since A is connected, there must be a component C_A such that $A \subseteq C_A$. Call C another component of B and take $x \in C$. There are two open subsets H_1 and H_2 of X such that $C_A \subseteq H_1$, $C \subseteq H_2$ and $H_1 \cap H_2 = \emptyset$. Then there is an open ball $B(x, r)$ such that $B(x, r) \subseteq H_2$ which yields $B(x, r) \cap A = \emptyset$, so that $x \notin \overline{A}$.
- (b) If C is a component of X , $C \subseteq \overline{C}$ always holds. But for point (a) \overline{C} also is connected, so $\overline{C} \subseteq C$.

□

Chapter 8

Elementary Properties and Examples of Analytic Functions

8.3 Analytic functions as mappings. Möbius transformations

Proposition 8.3.1. *The linear fractional transformation S defined by*

$$S(z) = \frac{az + b}{cz + d} \quad (8.1)$$

is invertible if and only if $ad - bc \neq 0$ and constant if and only if $ad - bc = 0$.

Proof. If $ad - bc \neq 0$ let T be the linear fractional transformation defined by

$$T(w) = \frac{dw - b}{-cw + a}. \quad (8.2)$$

$$T(S(w)) = \frac{a \frac{dw - b}{-cw + a} + b}{c \frac{dw - b}{-cw + a} + d} = \frac{\frac{adw - ab - cbw + ab}{-cw + a}}{\frac{cdw - cb - cdw + ad}{-cw + a}} = \frac{(ad - bc)w}{ad - bc} = w \quad (8.3)$$

and

$$S(T(z)) = \frac{d \frac{az + b}{cz + d} - b}{-c \frac{az + b}{cz + d} + a} = \frac{\frac{adz + bd - bcz - bd}{cz + d}}{\frac{-acz - bc + acz + ad}{cz + d}} = \frac{(ad - bc)z}{ad - bc} = z. \quad (8.4)$$

If $ad - bc = 0$ then, if $d \neq 0$

$$S(z) = \frac{\frac{b}{d}z + b}{cz + d} = \frac{bcz + bd}{cdz + d^2} = \frac{b(cz + d)}{d(cz + d)} = \frac{b}{d}; \quad (8.5)$$

if $d = 0$ then $bc = 0$ which implies, since it cannot be $d = c = 0$, that $b = 0$, and

$$S(z) = \frac{az}{cz} = \frac{a}{c}. \quad (8.6)$$

□

Proposition 8.3.2. *The Möbius transformation T defined by*

$$T(z) = \frac{az + b}{cz + d} \quad (8.7)$$

satisfies $T^2 = I$ and $T \neq I$ if and only if $a = -d$.

Proof. By computation

$$T^2(z) = \frac{(a^2 + bc)z + ab + bd}{(ca + cd)z + cb + d^2} \quad (8.8)$$

so $T^2(z) = z$ if and only if

$$c(a + d)z^2 + (a + d)(d - a)z - (a + d)b = 0. \quad (8.9)$$

This holds for every $z \in \mathbb{C}$ if and only if $a = -d$. □

Proposition 8.3.3. *If T is a Möbius transformation and $T^2 = I$ then T has two distinct fixed points.*

Proof. By Proposition 8.3.2 if $T^2 = I$ then

$$T(z) = \frac{az + b}{cz - a}. \quad (8.10)$$

Then $T(z) = z$ if and only if

$$cz^2 - 2az - b = 0 \quad (8.11)$$

This equation has two different roots if and only if

$$a^2 + bc \neq 0 \quad (8.12)$$

which holds if T is a Möbius transformation. \square

Proposition 8.3.4. *If z_1, z_2 are two distinct points in \mathbb{C} , there is only one Möbius transformation T such that $T^2 = I$ and z_1, z_2 are the fixed points of T , and it is represented by*

$$T(z) = \frac{(z_1 + z_2)z - 2z_1 z_2}{2z - (z_1 + z_2)} \quad (8.13)$$

Proof. Let

$$T(z) = \frac{az + b}{cz - a}. \quad (8.14)$$

Then $T(z) = z$ if and only if

$$cz^2 - 2az - b = 0. \quad (8.15)$$

If θ_1 and θ_2 are the two square roots of $a^2 + bc$, the last equation has the two roots

$$z_1 = \frac{a + \theta_1}{c} \quad (8.16)$$

$$z_2 = \frac{a + \theta_2}{c}. \quad (8.17)$$

We can suppose $a^2 + bc = 1$, otherwise we can divide every coefficient in the representation of T by any τ such that $\tau^2 = a^2 + bc$, and get another representation of T . Then

$$z_1 = \frac{a + 1}{c} \quad (8.18)$$

$$z_2 = \frac{a - 1}{c}. \quad (8.19)$$

Hence

$$a = \frac{z_1 + z_2}{z_1 - z_2} \quad (8.20)$$

$$c = \frac{2}{z_1 - z_2}. \quad (8.21)$$

From $a^2 + bc = 1$ follows

$$b = \frac{2z_1 z_2}{z_2 - z_1}. \quad (8.22)$$

It is a simple check to verify that if T is represented by (8.13) then z_1 and z_2 are its fixed points. \square

Proposition 8.3.5. *Let T, S be Möbius transformations such that $T^2 = S^2 = I$, with fixed points respectively z_1, z_2 and w_1, w_2 . If $T(w_1) = w_2$ then $S(z_1) = z_2$.*

Proof. We know that the Möbius transformation S that has fixed points w_1 and w_2 is represented by

$$S(z) = \frac{(w_1 + w_2)z - 2w_1w_2}{2z - (w_1 + w_2)}. \quad (8.23)$$

If T has fixed points z_1 and z_2 , and $w_2 = T(w_1)$, then

$$w_2 = \frac{(z_1 + z_2)w_1 - 2z_1z_2}{2w_1 - (z_1 + z_2)}. \quad (8.24)$$

Therefore

$$S(z) = \frac{\left(w_1 + \frac{(z_1+z_2)w_1 - 2z_1z_2}{2w_1 - (z_1+z_2)}\right)z - 2w_1 \frac{(z_1+z_2)w_1 - 2z_1z_2}{2w_1 - (z_1+z_2)}}{2z - \left(w_1 + \frac{(z_1+z_2)w_1 - 2z_1z_2}{2w_1 - (z_1+z_2)}\right)} = \quad (8.25)$$

$$= \frac{(2w_1^2 - 2z_1z_2)z - 2w_1^2(z_1 + z_2) + 4w_1z_1z_2}{(4w_1 - 2(z_1 + z_2))z - (2w_1^2 - 2z_1z_2)} \quad (8.26)$$

$$(8.27)$$

and

$$S(z_1) = \frac{w_1^2z_1 - z_1^2z_2 - w_1^2z_1 - w_1^2z_2 + 2w_1z_1z_2}{2w_1z_1 - z_1^2 - z_1z_2 - w_1^2 + z_1z_2} = \quad (8.28)$$

$$= \frac{-z_1^2z_2 - w_1^2z_2 + 2w_1z_1z_2}{2w_1z_1 - z_1^2 - w_1^2} = \quad (8.29)$$

$$= \frac{(z_1 - w_1)^2z_2}{(z_1 - w_1)^2} = z_2. \quad (8.30)$$

□

Proposition 8.3.6. *If T, S are Möbius transformations such that $T^2 = S^2 = I$ and T swaps S 's fixed points, then $ST = TS$.*

Proof. Let z_1, z_2 and w_1, w_2 be the fixed points of T and S . Then $T(w_1) = w_2$ and by Proposition 8.3.5 $S(z_1) = z_2$. Let R be the Möbius transformation defined by

$$\begin{cases} R(0) = z_1 \\ R(\infty) = z_2 \\ R(1) = w_1. \end{cases} \quad (8.31)$$

Then

$$\begin{cases} R^{-1}SR(0) = \infty \\ R^{-1}SR(\infty) = 0 \\ R^{-1}SR(1) = 1 \end{cases} \quad (8.32)$$

which implies that $R^{-1}SR(z) = \frac{1}{z}$. Furthermore

$$\begin{cases} R^{-1}TR(0) = 0 \\ R^{-1}TR(\infty) = \infty \\ R^{-1}TR(1) = R^{-1}(w_2) \end{cases} \quad (8.33)$$

but $R^{-1}SR(R^{-1}(w_2)) = R^{-1}S(w_2) = R^{-1}(w_2)$ whence $R^{-1}(w_2) = 1$ or $R^{-1}(w_2) = -1$, but $R^{-1}(w_1) = 1$, so $R^{-1}(w_1) = -1$. Then $R^{-1}TR(z) = -z$, and $R^{-1}TR$ and $R^{-1}SR$ commute. But then $R^{-1}TRR^{-1}SR = R^{-1}SRR^{-1}TR$ implies $TS = ST$. □

Proposition 8.3.7. *If T is a Möbius transformation such that $T^2 = I$ with fixed points z_1 and z_2 , then for any $z \in \mathbb{C}$ the points $z, T(z), z_1, z_2$ lie on a circle.*

Proof. We have

$$(T(z), z_1, z_2, z) = (z, z_1, z_2, T(z)), \quad (8.34)$$

that is

$$\frac{z - z_2}{z - T(z)} \frac{z_1 - T(z)}{z_1 - z_2} = \frac{T(z) - z_2}{T(z) - z} \frac{z_1 - z}{z_1 - z_2} \quad (8.35)$$

whence

$$\frac{\frac{z - z_2}{T(z) - z_2}}{\frac{z - z_1}{T(z) - z_1}} = -1 \quad (8.36)$$

that is

$$(z, T(z), z_2, z_1) = -1. \quad (8.37)$$

□

Chapter 9

Complex Integration

9.1 Riemann-Stieltjes integrals

Proposition 9.1.1. *Let $\gamma : [a, b] \rightarrow \mathbb{C}$ be a rectifiable path, $a < h < b$. Define*

$$\gamma_1 = \gamma|_{[a, h]}$$

$$\gamma_2 = \gamma|_{[h, b]}.$$

Then $V(\gamma) = V(\gamma_1) + V(\gamma_2)$.

Proof. Let

$$\mathcal{P}^1 = \{t_0, t_1, \dots, t_n\}$$

$$\mathcal{P}^2 = \{s_0, s_1, \dots, s_m\}$$

be partitions of $[a, h]$ and $[h, b]$. Then $\mathcal{P} = \mathcal{P}^1 \cup \mathcal{P}^2$ is a partition of $[a, b]$ and

$$V(\gamma_1, \mathcal{P}^1) + V(\gamma_2, \mathcal{P}^2) = V(\gamma, \mathcal{P}) \leq V(\gamma).$$

whence

$$V(\gamma_1) + V(\gamma_2) \leq V(\gamma).$$

If

$$\mathcal{P} = \{t_0, t_1, \dots, t_n\}$$

is a partition of $[a, b]$, let k be such that $h \in [t_k, t_{k+1}]$. Then

$$\mathcal{P}' = \{t_0, t_1, \dots, t_k, h, t_{k+1}, \dots, t_n\}$$

is a refinement of \mathcal{P} and

$$\mathcal{P}^1 = \{t_0, t_1, \dots, t_k, h\}$$

$$\mathcal{P}^2 = \{h, t_{k+1}, \dots, t_n\}$$

are partitions of $[a, h]$ and $[h, b]$. Then

$$V(\gamma, \mathcal{P}) = V(\gamma_1, \mathcal{P}^1) + V(\gamma_2, \mathcal{P}^2) \leq V(\gamma_1) + V(\gamma_2)$$

whence

$$V(\gamma) \leq V(\gamma_1) + V(\gamma_2).$$

□

Proposition 9.1.2. *Let $\gamma : [a, b] \rightarrow \mathbb{C}$ be a continuous path, and suppose that for every h such that $a < h < b$ the path $\gamma_h = \gamma|_{[h, b]}$ is rectifiable, and*

$$I = \lim_{h \rightarrow a^+} V(\gamma_h) \in \mathbb{R}. \quad (9.1)$$

Then γ is rectifiable, and $V(\gamma) = I$.

Proof. Let $\epsilon > 0$, and let \mathcal{P} be any partition of $[a, b]$. Take δ such that for $x_1, x_2 \in [a, b]$, $|x_1 - x_2| < \delta$ yields $|\gamma(x_1) - \gamma(x_2)| < \epsilon$ (of course γ is uniformly continuous). Now, take a refinement of \mathcal{P}

$$\mathcal{P}' = \{t_0, t_1, \dots, t_n\} \quad (9.2)$$

such that $|\mathcal{P}'| < \delta$. Then

$$\begin{aligned} v(\gamma, \mathcal{P}) &\leq v(\gamma, \mathcal{P}') = |\gamma(t_1) - \gamma(t_0)| + \sum_{k=2}^n |\gamma(t_k) - \gamma(t_{k-1})| < \\ &< \epsilon + \sum_{k=2}^n |\gamma(t_k) - \gamma(t_{k-1})| \leq \\ &< \epsilon + V(\gamma|_{[t_1, b]}) \leq \epsilon + I. \end{aligned}$$

Hence for every $\epsilon > 0$ $V(\gamma) \leq \epsilon + I$, which yields $V(\gamma) \leq I$.

On the other hand, if $a < h < b$ and \mathcal{P} is any partition of $[h, b]$, we have

$$v(\gamma_h, \mathcal{P}) \leq V(\gamma) \quad (9.3)$$

which yields

$$V(\gamma_h) \leq V(\gamma) \quad (9.4)$$

and eventually

$$I \leq V(\gamma). \quad (9.5)$$

□

Corollary 9.1.1. *Let $\gamma : [a, b] \rightarrow \mathbb{C}$ be a rectifiable path and $a < t < b$. Define $\gamma_t = \gamma|_{[a, t]}$. Then*

$$\lim_{t \rightarrow b^-} V(\gamma_t) = V(\gamma).$$

Proof. The function

$$\begin{aligned} f : [a, b] &\rightarrow \mathbb{R}^+ \\ t &\mapsto V(\gamma_t) \end{aligned}$$

is increasing, and $f(t) \leq V(\gamma)$, so its limit in b^- exists in \mathbb{R} . By Proposition 9.1.2 this limit is $V(\gamma)$.

□

Corollary 9.1.2. *Let $\gamma : [a, b] \rightarrow \mathbb{C}$ be a rectifiable path and $a < t < b$. Define $\sigma_t = \gamma|_{[t, b]}$. Then*

$$\lim_{t \rightarrow b^-} V(\sigma_t) = 0.$$

Proof. Let $\gamma_t = \gamma|_{[a, t]}$. Then $V(\gamma_t) + V(\sigma_t) = V(\gamma)$ so by Corollary 9.1.1

$$\lim_{t \rightarrow b^-} V(\sigma_t) = V(\gamma) - \lim_{t \rightarrow b^-} V(\gamma_t) = 0.$$

□

Proposition 9.1.3. *Let t_k be a sequence of real numbers such that $t_k \in [a, b]$, $t_0 = a$, $t_{k+1} > t_k$ and $\lim t_k = b$, and for each k let $\gamma_k : [t_k, t_{k+1}] \rightarrow \mathbb{C}$ be a smooth path, with $\gamma_k(t_{k+1}) = \gamma_{k+1}(t_{k+1})$, and suppose that the series*

$$\sum_{k=0}^{+\infty} V(\gamma_k)$$

converges. Then $\gamma_k(t_k)$ converges, the path $\gamma : [a, b] \rightarrow \mathbb{C}$ defined by

$$\gamma(t) = \begin{cases} \gamma_k(t) & \text{if } t \in [t_k, t_{k+1}) \quad k \in \mathbb{N} \\ \lim \gamma_k(t_k) & \text{if } t = b \end{cases}$$

is rectifiable, and

$$V(\gamma) = \sum_{k=0}^{+\infty} V(\gamma_k).$$

Furthermore if f is a continuous function defined on an open subset of \mathbb{C} containing $\{\gamma\}$

$$\int_{\gamma} f(z) dz = \sum_{k=0}^{+\infty} \int_{\gamma_k} f(z) dz$$

Proof. If $\epsilon > 0$ there is $\bar{n} \in \mathbb{N}$ such that $n_2 > n_1 \geq \bar{n}$ implies

$$\sum_{k=n_1}^{n_2} V(\gamma_k) < \epsilon.$$

So if $n_2 > n_1 \geq \bar{n}$

$$\begin{aligned} |\gamma_{n_2}(t_{n_2}) - \gamma_{n_1}(t_{n_1})| &= \left| \sum_{k=n_1}^{n_2-1} \gamma_{k+1}(t_{k+1}) - \gamma_k(t_k) \right| = \\ &= \left| \sum_{k=n_1}^{n_2-1} \gamma_k(t_{k+1}) - \gamma_k(t_k) \right| \leq \\ &\leq \sum_{k=n_1}^{n_2-1} |\gamma_k(t_{k+1}) - \gamma_k(t_k)| \leq \\ &\leq \sum_{k=n_1}^{n_2-1} V(\gamma_k) < \epsilon \end{aligned}$$

which means that $\gamma_k(t_k)$ is a Cauchy sequence, and thus it converges. Let

$$l = \lim \gamma_k(t_k).$$

Now if $\epsilon > 0$, let \bar{k} such that $k \geq \bar{k}$ implies $|l - \gamma_k(t_k)| < \frac{\epsilon}{2}$ and $V(\gamma_k) < \frac{\epsilon}{2}$. If $\delta = b - t_{\bar{k}}$ then $b - t < \delta$ implies $t \in [t_{k_0}, t_{k_0+1}]$ for some $k_0 \geq \bar{k}$, thus if $b - t < \delta$ then

$$|\gamma(b) - \gamma(t)| = |l - \gamma_{k_0}(t_{k_0}) + \gamma_{k_0}(t_{k_0}) - \gamma(t)| < \frac{\epsilon}{2} + V(\gamma_{k_0}) < \epsilon.$$

This proves that γ is continuous in b .

Now, if $t \in [a, b]$ the path $\gamma_t = \gamma_{|[a,t]}$ is piecewise smooth, so if \bar{n} is such that $t \leq t_{\bar{n}}$ then

$$V(\gamma_t) \leq \sum_{k=0}^{\bar{n}} V(\gamma_k) \leq \sum_{k=0}^{\infty} V(\gamma_k)$$

so

$$V(\gamma) \leq \sum_{k=0}^{\infty} V(\gamma_k).$$

If $\epsilon > 0$ there is \bar{n} such that

$$\sum_{k=0}^{\bar{n}} V(\gamma_k) > \sum_{k=0}^{\infty} V(\gamma_k) - \epsilon$$

thus

$$V(\gamma) \geq V(\gamma_{|[a,t_{\bar{n}+1}]}) = \sum_{k=0}^{\bar{n}} V(\gamma_k) > \sum_{k=0}^{\infty} V(\gamma_k) - \epsilon.$$

Since this holds for any $\epsilon > 0$, it yields

$$V(\gamma) \geq \sum_{k=0}^{\infty} V(\gamma_k).$$

If f is a continuous function defined on an open subset of \mathbb{C} containing $\{\gamma\}$, let $\bar{\gamma}_k = \gamma|_{[a, t_k]}$. Then

$$\int_{\gamma} f(z) dz = \lim_{k \rightarrow +\infty} \int_{\bar{\gamma}_k} f(z) dz = \lim_{k \rightarrow +\infty} \sum_{h=0}^{k-1} \int_{\gamma_h} f(z) dz = \sum_{h=0}^{+\infty} \int_{\gamma_h} f(z) dz.$$

□

Appendix A

Miscellaneous

A.1 Identity 1

The following identity holds (in any ring):

$$\sum_{k=0}^n \sum_{h=0}^k a_h b_{k-h} = \sum_{k=0}^n \sum_{h=0}^{n-k} a_k b_h. \quad (\text{A.1})$$

Proof. By induction on n . If $n = 0$ then the left side is

$$\sum_{k=0}^0 \sum_{h=0}^k a_h b_{k-h} = \sum_{h=0}^0 a_h b_{0-h} = a_0 b_0 \quad (\text{A.2})$$

and the right one

$$\sum_{k=0}^0 \sum_{h=0}^{0-k} a_k b_h = \sum_{h=0}^0 a_0 b_h = a_0 b_0. \quad (\text{A.3})$$

Now, supposing the identity holds for n :

$$\begin{aligned} \sum_{k=0}^{n+1} \sum_{h=0}^k a_h b_{k-h} &= \sum_{k=0}^n \sum_{h=0}^k a_h b_{k-h} + \sum_{h=0}^{n+1} a_h b_{n+1-h} = \\ &= \sum_{k=0}^n \sum_{h=0}^{n-k} a_k b_h + \sum_{h=0}^{n+1} a_h b_{n+1-h} = \\ &= \sum_{k=0}^n \sum_{h=0}^{n-k} a_k b_h + \sum_{h=0}^n a_h b_{n+1-h} + a_{n+1} b_0 = \\ &= \sum_{k=0}^n \sum_{h=0}^{n-k} a_k b_h + \sum_{k=0}^n a_k b_{n+1-k} + a_{n+1} b_0 = \\ &= \sum_{k=0}^n \sum_{h=0}^{n+1-k} a_k b_h + \sum_{h=0}^0 a_{n+1} b_h = \\ &= \sum_{k=0}^n \sum_{h=0}^{n+1-k} a_k b_h + \sum_{h=0}^{n+1-(n+1)} a_{n+1} b_h \\ &= \sum_{k=0}^{n+1} \sum_{h=0}^{n+1-k} a_k b_h. \end{aligned}$$

□

A.2 The real and immaginary part and module of sin and cos

$$\begin{aligned}
\sin(x+iy) &= \frac{e^{i(x+iy)} - e^{-i(x+iy)}}{2i} = \frac{e^{ix-y} - e^{-ix+y}}{2i} = \\
&= \frac{e^{-y}(\cos x + i \sin x) - e^y(\cos x - i \sin x)}{2i} = \\
&= \frac{-\cos x(e^y - e^{-y}) + i \sin x(e^y + e^{-y})}{2i} = \\
&= \sin x \cosh y + i \cos x \sinh y.
\end{aligned}$$

$$\begin{aligned}
|\sin(x+iy)|^2 &= (\sin x)^2(\cosh y)^2 + (\cos x)^2(\sinh y)^2 = \\
&= (\sin x)^2 + (\sin x)^2(\sinh y)^2 + (\cos x)^2(\sinh y)^2 = \\
&= (\sin x)^2 + (\sinh y)^2.
\end{aligned}$$

$$\begin{aligned}
\cos(x+iy) &= \frac{e^{i(x+iy)} + e^{-i(x+iy)}}{2} = \frac{e^{ix-y} + e^{-ix+y}}{2} = \\
&= \frac{e^{-y}(\cos x + i \sin x) + e^y(\cos x - i \sin x)}{2} = \\
&= \frac{\cos x(e^y + e^{-y}) - i \sin x(e^y - e^{-y})}{2} = \\
&= \cos x \cosh y - i \sin x \sinh y.
\end{aligned}$$

$$\begin{aligned}
|\cos(x+iy)|^2 &= (\cos x)^2(\cosh y)^2 + (\sin x)^2(\sinh y)^2 = \\
&= (\cos x)^2 + (\cos x)^2(\sinh y)^2 + (\sin x)^2(\sinh y)^2 = \\
&= (\cos x)^2 + (\sinh y)^2.
\end{aligned}$$

A.3 The group $SL_2(\mathbb{C})$

Proposition A.3.1. *The group $SL_2(\mathbb{C})$ has no normal non trivial subgroup other than*

$$\mathcal{K} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}. \quad (\text{A.4})$$

Proof. Clearly \mathcal{K} is a normal subgroup of $SL_2(\mathbb{C})$. Let \mathcal{N} be a normal subgroup of $SL_2(\mathbb{C})$ and $\mathcal{N} \neq \mathcal{K}$, $\mathcal{N} \neq \{I\}$. We will prove that $\mathcal{N} = SL_2(\mathbb{C})$ by showing that for any conjugated class \mathcal{C} of $SL_2(\mathbb{C})$ there is $L \in \mathcal{N} \cap \mathcal{C}$. Since all the elements of $SL_2(\mathbb{C})$ belonging to the same conjugated class must also be in \mathcal{N} , this proves that $\mathcal{N} = SL_2(\mathbb{C})$.

In $SL_2(\mathbb{C})$ there is, for any λ_1, λ_2 such that $\lambda_1 \neq \lambda_2$, one conjugated class containing

$$D_{\lambda_1, \lambda_2} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix},$$

one conjugated class containing only

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

one conjugated class containing only

$$-I = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix},$$

one conjugated class containing

$$H = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

one conjugated class containing

$$K = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}.$$

Let $A \in \mathcal{N}$ such that $A \neq I$. Let $\delta_1, \delta_2 \in \mathbb{C}$ and $h = \delta_1 + \delta_2$. Now we show that there is $Y \in \mathcal{N}$ such that the eigenvalues of Y are δ_1, δ_2 .

If the eigenvalues of A are λ_1 and λ_2 such that $\lambda_1 \neq \lambda_2$, then all the elements of $SL_2(\mathbb{C})$ with the same eigenvalues must be in \mathcal{N} , in particular

$$B = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \in \mathcal{N}. \quad (\text{A.5})$$

Let

$$X = \begin{pmatrix} x & y \\ z & t \end{pmatrix}. \quad (\text{A.6})$$

The linear system

$$\begin{cases} \lambda_1 x + \lambda_2 t = h \\ x + t = \lambda_1 + \lambda_2 \end{cases} \quad (\text{A.7})$$

has one solution, for any h, λ_1, λ_2 , since $\lambda_1 \neq \lambda_2$, and that means $\text{Tr}(XB) = h$, $\text{Tr}(X) = \lambda_1 + \lambda_2$. Choosing z, y such that $xt - zy = 1$ we have $X \in \mathcal{N}$, so $XB \in \mathcal{N}$ and $\text{Tr}(XB) = h$, which implies that the eigenvalues of XB are δ_1, δ_2 . If $h \neq 2$ and $h \neq -2$ then $\delta_1 \neq \delta_2$. If $h = 2$ then $\delta_1 = \delta_2 = 1$ and $XB \neq I$, since B^{-1} has the same eigenvalues as B , so XB is similar to H . If $h = -2$ then $\delta_1 = \delta_2 = -1$ and $XB \neq -I$, since $-B^{-1}$ has the same eigenvalues as $-B$, so XB is similar to K . Finally, if C is similar to H and D is similar to K then CD is similar to $HK = -I$.

If the eigenvalues of A are not distinct, A must not be similar either to I or $-I$, so it is similar to H or to K .

Suppose A similar to H . Let

$$X = \begin{pmatrix} x & y \\ z & t \end{pmatrix}. \quad (\text{A.8})$$

The linear system

$$\begin{cases} x + z + t = h \\ x + t = 2 \end{cases} \quad (\text{A.9})$$

has ∞^1 solutions, for any h , for all of which $z = h - 2$. If $h \neq 2$ we can choose y such that $xt - zy = 1$, and XH is similar either to D_{δ_1, δ_2} if $h \neq -2$, or to K if $h = -2$. If $h = 2$ there's no need to show anything since any $Z \in SL_2(\mathbb{C})$ such that $\text{Tr}(Z) = 2$ is already similar to A .

The same holds if A is similar to K . □