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Exercises






Chapter 1

The Complex Number System

1.2 The field of complex numbers

1.2.1 Exercise

B
1. From 2% — |22 follows L — 2 — __ %e(2) - m(z) g Ne(x)= G
. From 2z = |z|” follows - = PP = merhamGr isertameE A0 o G
z) T Re(z)2+Tm(z)?

2. We have

z—a (z—a)(z+a) 22+ (z—%Z)a—ad*> 2> 4 2i Im(2)a — a?

(1.1)

z+a  (z4a)(z+a) 2ZZ+(E+2at+d® |22 +2Re(2)a + a?
and
%e(z_a> _ i 2> — a2
zZ+a |z|” + 2Re(2)a + a?
- <z—a> 27m(z)a
Jm = — :
zZ+a |z|” + 2Re(2)a + a?
3. We have

[
_|_
~.
—~
w
2
—
N
~—
o e
(S
3
—
N
—
|
(S
3
—
N
N
w
N

and

Re(z3) = Re(2)(Re(2)? — 3Tm(2)?)
Jm(2®) = Im(2)(3%e(2)? — Im(2)?)
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4. We have
3451  (3+5i)(1—"7i) 38—16i (1.2)
7i+1  (1+7)(1-7i) 50 '
and
3+ 51 38
e <7i + 1> - 50
Tm 3+ 51 _ 16
7i+1) 50

5. For point 3 we have

) 3
Pe <1+Z\/§> _

2

o ((52) ) - 2633

6. It is evident for point 5 that

. 3
(4_2“6) —T=1 (1.3)

and so again

) 6
Re <_1 _2“/3>

) 6
Jm <_1 — Z\/§>

2

|
—_

Il
=

7. If n =4k +r, with 0 < r < 4, we have i" = **+7" = (#4)¥j" = 1¥{" = 4" then

0 ifr=1orr=3,

Re(i") = -1 ifr=2,

1 ifr=0.

0 ifr=0o0rr=2,
Jm(i") = -1 ifr =3,

1 ifr=1.
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8. We have
1+i\*
(ﬂ) -
1+i\° (14, [(—1+i
i\t e
() = o=
1+4\°  (L14i\, . (—1—i
(%) = (F)ov=(04)
(1+i>6 _ s
\/i - - )
A A A VI A
(%) = (%) =-(5)
1+4\*
(7)) = o=
1.2.2 Exercise
1. We have
-2+ =22+ 1 =15, (1.4)
2 4i=-2—1i. (1.5)
2. We have
|—3| = 3, (1.6)
—3=-3. (1.7)
3. We have
(24 0)(4 4 3i)| = |24 | |4 + 3i] = V5 - V25 = 5V/5, (1.8)
(24 i) (4+3i)=(2+14)(4+3i)=(2—14)(4—3i) =5 — 10i. (1.9)
4. We have
3—i | [3—=i V10 _ [10
V2 +3i _yﬁ+3¢1_\/ﬁ_\/:’ (110)
(3—¢ )Z 341 (B+)(V2+3) _3(V2-1)+i(9+ V?2) (111)
V2 + 3i V2-3i (V2 -3i)(V2+3i) 11 ' '
5. We have
i "
(i+3>‘ T 344 V10 (1.12)
( i )Z i —i _ (—)(B+i) _ 1-3i (1.13)
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6. We have
1+0)f) =N +if =v2° =23 =8, (1.14)
A+ =TFi =(1-14)°%=(-2i)=(-2)%3 = 8i. (1.15)
7. We have
|17 = Ji]'T = 1, (1.16)

AT =t =il =T =7 = —i. (1.17)

1.2.3 Exercise

e Suppose z € R, which in fact means Jm(z) =0, and z = z.

e Suppose Z = z. Then Jm(z) = (2 — %) = 0, which is the same as saying z € R.

1.2.4 Exercise

L |z4w]® = (z+w)(z+w) = 22+ 220 + ww = |2 + 2w + (20) + |[w]* = |2]* + 2Re(zw) + |w|®
2. |z —w® = |2]* + 2Re(z(—w)) + |—w|* = |2]* — 2Re(zw) + |w|?

3. [z + w4 |z — w]® = 2 + 2Re(z0) + |w]? + |2]> — 2Re(zw) + |w|* = 2(|2|* + |w|?)

1.2.5 Exercise

e That |wiws| = |wy| |ws] is already known. Now suppose |wiws - - - wy,| = |wi||ws|- - |wy,|. Then
[wyws -+ Wyp1| = |wrws - - Wy | |[Wpg1] =
|wi] [wa] - - Jwn| [wna]-

e That wywy; = wywsy is already known. Now suppose wiws---w, = WiWs ‘- Wy. Then
W1W2 *+ " Wp41 = WW2 -+ - Wy Wpy1 =

1.2.6 Exercise
Let

R(2) ao+arz+ -+ ap2"
z) = ,
b0+b1Z+"'+bmzm

(1.18)

where a; € R,0 < n;b; € R,0 <m. Then

R(z) = Ltortotanst
To+@Z+ -+ Tpz"
bo +b1Z+ -+ byz™
ag+ariz+ -+ a,z"
bo +b1Z+ -+ + by 2™

= R(2).
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1.3 The Complex Plane

1.3.1 Exercise
From

lz| < |z —w| + |w] (1.19)
follows |z| — |w| < |z — w|, and from

lw] < Jw — z[ + 2] (1.20)

follows |w| — |z| < |z — w|. So ||w| —|z|| < |z — w|.

If equality holds, then either |z| = |z — w| + |w| or |w| = |w — z| + |z|. Suppose z # 0, w # 0. In the
former case, z — w = tw for some ¢ > 0, whence z = (¢t + 1)w; in the latter case w — z = uz for some
u > 0, whence w = (u + 1)z. In all cases, either z = aw for some « > 0 or w = Sz for some § > 0.

1.3.2 Exercise

e Suppose zi/z; > 0 for 1 < k,I < n such that z; # 0. Suppose z; # 0. In particular z; = a2z,
1 <k <n, for some a; € Rt. Then

= (on+-+an) |z =z + - +an |zl =
= Jarzg|+ -+ |anzgl = |2l + -+ |zal] -

e By induction. We know that
o1zl = ol o 2l (1.21)

implies z;/z; > 0 for 1 <4,j < n and z; # 0 if n = 2. So suppose that if the implication holds
for n, it also holds for n + 1.

From
|21+ -+ Zng1] = 21| + - - + 2ol (1.22)
we have
21+ znga] = [zl 4+ 4 2] <
<zt + -+ zZn| + |Zng1] < (1.23)
<z + -+ |znt1]
hence
|21+ -+ zn| + |2ng1| = |21 + - + |Zn4a] (1.24)
and
|21+ 4 2] = 21|+ + |2a] - (1.25)

By the inductive hypothesis, this implies z;/z; > 0 for 1 < 4,5 <n and z; # 0. So if z; # 0, let
z; = azg for 1 <4 < n, and we have

a1z + - 4 an2g + Z2nga] = lonzg] + o+ o zg] + [z
:O‘1|ch‘+"'+a7L|Z]}|+‘Zn+1| (1.26)

=|oizg + -+ anzp| + 2041
that is, if . = >0 | oy,
|azg + znt1| = |azg] + |zn41] (1.27)

which implies z,41/z; > 0. This completes the proof that z;/z; > 0 for 1 <, < n+1 and
Zj # 0
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1.3.3 Exercise
Since the equation
|z —a| —|z+a| =2¢ (1.28)

in the plane R? says that the difference between the distances of the point z = (x,%) from the points
(a,0) and (—a,0) respectively is constant and equal to 2¢, there are three possible cases for the set

C={(z,y) eR?*| |z—a| — |z +a| =2c} (1.29)
as follows
1. ¢c<|al: C=0.
2. ¢=|a|: Cisthe halflinez >aifa<0orz<aifa>0

3. ¢ > |a|: Cis a branch of the hyperbola having focuses in the points (a,0) and (—a,0) and axes
the lines y = £+/(a? — ¢2)/c%x, namely the branch that encloses the point (—a,0).

If a is any complex number, the set C is obtained from one of the former cases with the rotation that
brings the point (]a|,0) to the point a. For example, in the third case C is the branch of a hyperbola
with focuses a and —a that encloses the point —a.

1.4 Polar representation and roots of complex numbers

1.4.1 Exercise

Since 1 = cis(0), the equation 2™ = 1 has roots

2k
cis (J) . 0<k<5 (1.30)
that is
z1 =cis(0) =1
2
z3 = cis <7r) = 1 +i§
3
zg =cis(m) = -1

(4

Z5 = CI18 ?
. (5w 1 V3

zg =Cl8| — | =< —1—
3 2 2

1.4.2 Exercise

(a) Since i = cis (%), the equation 2% = i has roots

2k
cis(”+”>, 0<k<1 (1.31)
1772
that is
z —cis(z>—ﬁ+i@
P\ T 2
5%
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(b) As before, the equation z® = i has roots

2
s (T+2FT)  o<k<o (1.32)
6 3
that is
. (T V3 1
a=ds(5) =5 +iz
29 = cis T £ 1
2 6)" 2 "2
z3 = Cis 31 =—1
3= 5 )=
(c) Since [v3+3i| =v12=2V3,if § = arg(v/3 + 3i) it must be
cosf = —\/g -1
2v3 2
(1.33)
sinf = 3 ﬁ
C2v3 2
whence ¢ = %, and the equation 2% = /3 + 3i has roots
2k
\/2v/3 cis <g+27r> 0<k<1 (1.34)
that is
L (T 3v3 V3
zZ1 = 2\/3018 (g) = T + 7 7
T 3v3 V3
29 \/5015( 5 ) 5 Y
1.4.3 Exercise
The first part is trivial:
(ab)n'ﬁL — anm,bnnL — (a'll)'ﬁl(bm)'ll — (1)77L(1)7L — 1. (135)

Of course any integer which is a multiple both of n and m would do, so the smallest value of k£ such
that (ab)* =1 for any given a and b is the smallest common multiple SMC(n,m) of n and m.

Yet that doesn’t mean that, given a primitive nth root of unity and b primitive mth root of unity,
SMC(n,m) is the smallest integer k such that (ab)® = 1. First, observe that z is a primitive rth root
of unity, if and only if

r=min{k € N*t|zF =1} (1.36)
and that if ° = 1, then r | 5. So if (ab)* = 1, then

(ab)kn — bkn =1

(ab)P™ = aF™ =1

which yields that m | kn and n | km. Then every prime divisor of n or m but not of both must divide
as well k. To put it more clearly, if p is a prime, p* | n, and p* t m, then p* | k; and if p¥ | m, and
p¥ 1 m, then p¥ | k. So k cannot be smaller than the product of all such powers of primes. But this
doesn’t give a minimum. Indeed, if

a = cis (%)
b = cis (g)
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then a is a primitive 12th root of unity and b is a primitive 4th root of unity, and

ab = cis (?) (1.37)

o (ab)® = 1. But if
. (T
a = cis (6)
b = cis <27r)
3

then a is a primitive 12th root of unity and b is a primitive 3rd root of unity, but

ab = cis (56”) (1.38)

and the smallest integer k such that (ab)* = 1 is 12, not 4.
If one of a and b is nonprimitive, the said condition does not hold, for example —1 is a 2nd root of
unity and also a 4th root of unity, but (—1)(—1) = 1.

1.4.4 Exercise
From

(cosf + isin @)™ = cos(nf) + isin(nd)
(cosf —isin @)™ = cos(nf) — isin(nd)

follows

cos(nf) (cos 0 +ising)" + (cosf — isinf)") =

(cos 0)"*(isin §)F 4

wm—t m\»—l

_|_

g ;;) .

k=0

_1 ( (cos )" ((isin@)* + (—isin 0)’“)) =
=0

= (cos )" — ( 2)((305 0)"2(sin )2 + (Z) (cos 0)" 4 (sin 0)* —
and

= ((cosf +isin )" — (cos§ —isin6)") =
2 (i <Z> (cos 6)"*(isin )"+
- i (Z) (cos )" *(—isin 9)k> —
(:O (Z) (cos )" ((isin0)* — (—isin 9)’6)) -
- (?) (cos0)" ' sinf — <§> (cos )" 3(sin6)® + ...

1.4.5 Exercise

It is enough to know that 2™ = 1 and z # 1, since

A+z+224+-+2"He-1)=2"-1=0. (1.39)
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1.4.6 Exercise

Just a trivial check:

o(t + s) = cis(t + s) = cis(t) cis(s) = ¢(t)p(s). (1.40)

1.4.7 Exercise

Let z = rcis#, and suppose 0 > 0. We’ll show that for some positive integer n it is Re(z") < 0.
<0< ‘%’T there’s nothing to prove. If 0 < § < 7, then there is a positive integer n such that
1 x 1x

— - 1.41
n+12< “—n2 ( )

which yields

1
nt % <r (1.42)

g <(n+1)0<
so Re(2" 1) = r"Hlcos((n + 1)) < 0.

If 37“ <0 <2m, let 0" =6 — 27, so that z = cis#’ and —F < 6’ < 0 and there is a positive integer n
such that

1m 1 m
— <l < - - 14
n2 - < n+12 (143)
which yields
n+lm ™
e T g T 1.44
R T (1.44)
and again Re(z" 1) = r"T1 cos((n + 1)6) < 0.
1.5 Lines and half planes in the complex plane
1.5.1 Exercise
The condition is that cis 3 L cisa, that is 8 =a+ 5 or §=a + 37”
1.6 The extended plane and its spherical representation
1.6.1 Exercise
Using (6.3) expressions for x1, za,x3 and o}, 25, 2% in (6.6) we get
d(z,2')? =
_ = , N — 2 2
_ ooz 2+ )+ (—ilz — 7)) (—i(e" — &) + (o] — 1(|]" ~ 1)
(I2* + D" +1)
2224 1)(2'F + 1) —dz2 — 4z — 227227 + 222+ 227 -2
= > > =
(7 + D" + 1)
427 + 427 — 427 — 472
(12 + D' +1)
(z—=2)z—2")
(" + (2] + 1)
|z — 2
(12" + (=" + 1)
If 2/ = oo, then 2§ =0, 25 = 0 and 25 = 1, then
2
-1 4
d(z,00)2 =2 — 2'2‘2 =0 (1.45)
2] +1  |2]"+1
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1.6.2 Exercise

1. (0,0,1)

2. (

Wl
ol
N

b

Wi

3. (

o
o
~lo

—

)

1.6.3 Exercise

Two circumferences of maximum radius 1, lying in the coordinate planes x1x3 and xox3 respectively.

1.6.4 Exercise

First, observe that N € A <= (33 = [. Then, if the point (21,22, x3) of R3 lies in the plane P, using
(6.2) we get

2612 + 202y + B3(|2|> — 1)

=1 1.46
|Z|2 +1 ( )

and, being |z|* = 22 4 42,
(Bs — Da® + (Bs — D)y® + 261z + 202y — (B +1) = 0. (1.47)

Now, if N € A then f3 = [, and the former equation becomes

prx+ oy — 20 =10 (1.48)
otherwise
2 2 l
2 g 51 B2 n + 083 0. (1.49)

+ T+ =
Bz —1 ﬁs—ly I —ps

1.6.5 Exercise

Let X = (z1,29,23) € S— N and Y = (y1,y2,y3) € S — N, and let ¢ : S — C be the stereographic
projection. Then, as we know

1 + 1T
X)= "~ _""=
o) = B
Y1 + 1Yo
Y:
o(r) =L
whence
Z1 Y1 . €2 Y2
. vy . 1.50
P(X) +o(Y) (1x3+1y3>+l(1x3+1y3> ( )
Let z=a 4 iy = ¢(X) + ¢(Y), then
. T " U1 :$1(1—y3)+yl(1_$3)
l—2z3 1-y3 (1—23)(1 —y3)
yo T2 b _ w2(1 —y3) +4p(1 —3)
l—2z3 1-ys3 (1—23)(1 —ys)

and

P+ 17 22+ 17 |2 +1

() = ( 20 2% |- 1) . (1.51)



Functions of One Complex Variable

1.6: The extended plane and its spherical representation 19
Now
2P +1=2%+9* =
) 2z1y1 yi
R e e R G
a3 2w2ys Y3
B Ry i R R R (v
_ (@l +a3)(1 —y3) + 2(z1yn + 22y2) (1 — 23)(1 —ys) + (47 +93) (1 — 23) T1—
(1 —a3)%(1 —y3)?
(zf +23)(1 — y3) + 2(21y1 + 2oy2) (1 — 23) (1 — y3) + (y§ + y3)(1 — 23)
= +
(1 —a3)?(1 —y3)?
n 2(1 —23)*(1 —y3)® = (1 —23)*(1 —y3)® _ _
(1 —23)*(1 = y3)?
_ (2 + a3 +1 -2z +23)(1 —y3)+
(1 —a3)%(1 —y3)?
LW -2y by ad)
(1 —23)%(1 — y3)?
n 2(x1y1 + 2oy) (1 — 23) (1 — y3) — (1 — x3)*(1 — y3)? _
(1 —a3)*(1 —y3)?
20— g) 20—y (- a) |
(1 —23)*(1 —ys)?
4 2@y + xayp) (A —23)(L —ys) — (1 = 23)* (1 — y3)?
(1 —a3)?(1 —y3)?
(1 —23)(1 —y3) [2(1 — 23) + 2(1 — y3) + 22191 + 222y2 — (1 — 23)(1 — y3)]
a (1 —23)*(1 —ys)?
(1 —x3)(1 —y3) [34 2w1y1 + 222Y2 — ¥3Y3 — 3 — Y3)
B (1 —a3)*(1 —y3)?
_ 2my1 + 222y2 — X3y3 — w3 — Y3 + 3
a (1 —23)(1—ys)
and, with similar calculations
1= 21y1 + 200ys — 3wsys Fxs +ys + 1 (1.52)
(1 —23)(1—ys)
Finally
2[z1(1—ys)+y1 (1—=3)]
2z1y1+2x2y2—x3Y3 —x3—Y3+3
b GX) +0(V)) = | o dea( =i inlisa f (1.53)

2w1Yy1+2T2Y2 —x3Y3—T3—Y3+3
2z1y1+2x2y2 —3x3ys+T3+ys+1

2z1Yy1+222y2 —23Ys—T3—Y3+3
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Chapter 2

Metric Spaces and the Topology of
C

2.1 Definition and examples of metric spaces

2.1.1 Exercise

1. In both cases, that is, R and C, we know that

(a) |z —w|>0forall z,we X

D) |z—w|=0 <= 2—w=0 < z=wforal z,we X

() [z—w|=|-(z—w)|=|w—z| forall z,we X

@) |z—ul=l(z—w)+ (w—u)| <|z—w|+ |w—u| for all z,w,ue X

2. It is more correct to consider (Y, d)7 where d = djy xy- Then, the conditions for d follow imme-
diately from the ones for d.

3. Obvious.

4. The first three conditions are obvious. As for the last one, one has:

d(a+ib,c+id) =max{|la —c|,|b—d|}
dc+id,e+if) =max{|c—el|,|d— f|}
da+ib,e+if) = max{la—el,|b - fI}

and
la —el <la—c|+|c—e€
|b—fl <|b—d|+1|d— f]
whence

max {Ja — | b — fI} < max{[a— | + e — e|,[b— d| +|d — f]} (2.1)
and using the easy-to-check inequality

max { + y,u + v} < max {z,u} + max {y + v} (2.2)
one gets the result.

5. The first three conditions are easy as usual. To prove the last one, one has to use Schwarz
inequality, which will be proved later:

Z b? for any a,b € R. (2.3)

i=1
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Now, if X = (21,22,...,2,), Y = (y1,¥2, . .-

one has
d(X,2)* = Z(ﬂ?z —z)? = Z((l‘i —yi)+ (g —2z))* =

Il
7
&8
I
<
~

()
_|_
ling
—~
<
pon
I
IS
S
~—
[\v]
_|_
[\
7
8
N
|
N
~
—~
<
N

< Z(zz - yi)2 + Z(yz - Zz)2 +2 Z(Iz - Zz)(y
< Z(xz - yi)Q + Z(yz - Zz)2+

n

= Z(xi —vi)? + Z(yi —z)*| =

i=1 i=1

= (d(X,Y) +d(Y, 2))*.

,Un) and Z = (21, 22, . ..

,Zn) are three points of R,

As for Schwarz inequality, if A, @ and b are any three real numbers, one has

1\? b2
<)\a)\b> :/\2a2+ﬁ72a620

whence

b2
2ab < M\2a? + "

and
1N\> o, b
<)\a+>\b> = A\a —|—F+2ab20

whence
b2
—2ab < N\2a? + 2
and from these two
b2
2|ab| < Na® + 2

So, if a1,as,...,a, and by, b, ..., b, are real numbers,

n n 1 n
YOI EPS SRR ol
i=1 i=1 i=1
and eventually, choosing

> i b}
Z?:l a?

one gets the result.

2

M=

2.1.2 Exercise

(2.5)

(2.6)

(2.7)

(2.10)

(a) X =B(0,1)isopen. If x € X, let r = 1—-d(O, z); clearly r > 0; then B(x,r) C X: ify € B(x,r),
then d(0O,y) < d(O,z) + d(z,y) < d(O,z) +r =d(O,z) + 1 —d(0,x) =r,s0 y € B(O, z).
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(b) X = {z € C| Jmz = 0} is closed, since C — X is open. If z = 2 + iy € C — X, then
B( ly|) € C — X uppose for instance y > 0, and let w = u +iv € B( ly]); if v < 0, then
zw) =/(u (v—y)2 > /(v—y)2 =|v—y|l =y —v >y which is impossible since

w € B(z, |y]); s tmustbev>0andthenw€(c X.

(c) X ={2€C|3IneNT:2"=1} is not open. First, observe that if 2 € X then |z| = 1. Further-
more, 1 € X, and in every open ball B(1,r) there is an element, for instance 1 + /2, such that
|1+7/2| > 1, that is 1 + /2 ¢ X and B(1,r) ¢ X. To show that X is not close, observe that
lcis(1)] = 1 but cis(1) ¢ X. Since we know that sin and cos are continuous functions, surely
for any € > 0 there exists a § such that /(sin(¢) — sin(1))2 + (cos(t) — cos(1))? < e whenever
[t — 1] < 4§, that is d(cis(t),cis(1)) < € if |t — 1| < 6. Now, take n such that 7/n < and

_ 2k
k:min{k€N|0<k<n—1W 1—5}. (2.11)
Clearly,
2k
BRSPS (2.12)
n
because
2k
LI ) (2.13)
n
yields

b L L Y P (2.14)
n n n n

which contradicts the minimality of k. So

2k
b 1‘ <5 (2.15)
n

which implies that
2k
cis (W> — cis(l)’ <e. (2.16)

n

What we have proved is this: given any € > 0 there exists an element z = cis(2k7/n) in X such
that z € B(1,¢), so C — X is not open and X is not closed.

(d) X={z€C| Imz=0,0<Rez < 1} is not open: clearly 0 € X, but there is no r > 0 such that
B(0,r) C X, as for instance ir/2 € B(0,r) but ir/2 ¢ X. X is not closed: 1 ¢ X but there is
no r > 0 such that B(1,7) C C — X, as for instance, if n = min{r/2,1/2}, 1 —n € B(1,r) but

—-n¢C—-Xasl—-nelX.

() X ={2€C| Tmz=0,0<Rez<1}isclosed: X =Y NZ whereY ={2€C| Jmz=0} and
Z ={z € C|0<Rez < 1}; we have already seen that the real axis Y is closed, and it is easy to
see that Z is closed too: if z € C— Z and for instance e z > 1, then B(z, (Rez—1)/2) CC—Z.
Similarly if SRez < 0.

2.1.3 Exercise

The open ball B(z,r) is open because, if y € B(x,r), then B(y,r — d(x,y)) C B(z,r): in fact, if
z € B(y,r —d(z,y)), then d(y, z) <r—d(z,y) and d(z, 2) < d(z,y) +d(y, z) < d(z,y)+r—d(z,y) =r
so z € B(x,r).

The closed ball B(x,r) is indeed closed because, if y € X — B(z,r), then B(y,d(z,y) —r) C
X — B(z,r): in fact, if 2 € B(y,d(z,y) —r) then d(y,z) < d(x,y) —r and d(z,y) < d(z,2) + d(z,y)
whence d(z, 2) > d(z,y) — d(y, 2) > d(z,y) +r — d(z,y) =r so z ¢ B(z,r) and 2 € X — B(z, 7).

2.1.4 Exercise

If all the sets Gj, j € J are open and x € Uge G, then there is at least an index jo € J such that
z € Gj,; then there is an open ball B(z,r) such that B(z,r) C Gj, which yields B(z,r) C U;c; G;
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2.1.5 Exercise

As stated, it is just a trivial and straightforward application of de Morgan’s laws to Proposition 1.9

2.1.6 Exercise
Just observe that G = X — (X — G).

2.1.7 Exercise

More generally: if (X, d) is a metric space and ¢ : X — Y is a bijection, then one can give Y a metric
space structure, defining d’ : Y x Y — R by d'(y1,y2) = d(¢" (y1), ¢ (y2)). It is a routine check to
prove that the function d’ satisfies the conditions in order to be a distance function.

2.1.8 Exercise

Let G be an open subset of X and Y C X. If z € GNY, since x € G and G is open, there is an open
ball B(z,r) of X such that B(x,r) C G; then B(x,r)NY is an open ball of Y and B(z,r)NY C GNY.

Let G be an open subset of Y (that is, in the topology of Y induced by the distance function d
restricted to Y). Then for every x € G there is an open ball of Y By (x,r,) such that By (z,r,) C G,
where By (z,r;) = B(x,r;)NY, and B(z,r,;) = {y € X | d(z,y) < ry}. Clearly we have

G=Yn <U B(m,rm)> (2.17)

zeG

and

A= U (x,75) (2.18)

zeG

is an open subset of X.

2.1.9 Exercise

Let G be a closed subset of X and Y C X. Then X — G is an open subset of X, and (X — G)NY is
an open subset of Y, as seen in Exercise 8. Since clearly Y —G = (X —G)NY, G is a closed subset of Y.

Let G be a closed subset of Y (that is, in the topology of Y induced by the distance function d
restricted to Y'). Then Y — G is an open subset of Y, so, as seen in Exercise 8, there is an open subset
Aof X such that Y —G=ANY and clearly G = (X —A)NY.

2.1.10 Exercise

Here A will denote the interior of the set A and 4 the closure of the set A.

(a) If A = A, then A is open, since so is A being union of open sets. If A is open, clearly A C A, as
A C A. But for any set S it is true that S C .S, being S union of subsets of S.

(b) If A = A, then A is closed, since so is A being intersection of closed sets. If A is closed, clearly
AD A as AD A. But for any set S it is true that S O .S, being S intersection of supersets of .S.

(c)

1. Since X — (X — A) is open and X — (X — A) C A, we have X — (X — A) C A. Furthermore,

X — AlsclosedandX ADX — AthenX ADX - A AandACXfoA.

2. Since X — (X — A) is closed and X — (X — A) D A, we have X — (X —A)D 2 A. Furthermore,
X —Aisopenand X —AC X — A, then X —AC X -Aand AD X — X — A.
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3. Since 904 = AN (X — A), then A C A and A C (X — A) and from the latter and Point 1
we get A C X — A, so A C A — A.
Clearly, A — A C A4; also, A— A C X — A so, by Point 2, A — A C (X — A). Then
A-ACAN(X - A)=0A.

(d) Both A € AUB and B € AU B hold, so both A C AUB and B C AU B hold too, whence
AUBCAUB. o o
Furthermore, AU B is a closed subset of X and AUB C AUB, so (AUB) C AUB.

(e) Ifz € A, there exists an open set B such that z € B C A, and then there is an open ball B(z,r)
such that B(x,r) C B; clearly B(x,r) C A. ) )
If there is an open ball B(z,r) such that B(z,r) C A, then B(x,r) C A and z € A.

2.1.11 Exercise

Here we use the well known fact that if « is an irrational number the set {n + ma | n € N;m € Z} is
dense in R.

Now, if t € T = {z €C| |z| =1}, there is a real number § such that ¢ = cis8 and for any
€ > 0 there exists 0 such that |0 — 8| < ¢ implies |cisé — cis 3] = |cis@ — t| < e. For the said well
known fact, there exist two integers n and m with n > 0 such that |n + 2mm — 8| < 0, which yields
cis(n + 2mm) — cis B| = |cisn —t] < e. So we have proved that for any ¢ € T and for any ¢ > 0 in
the open ball B(t,¢) lies an element of S = {cisk | k € N}, and this for Point (f) of Proposition 1.13
means that every point ¢ of T belongs to S, that is, T C S. But since T is closed and T D S, also
S C T holds, and eventually 7' = S.

To prove that T is closed, just observe that if ¢ T, then B(z,|z| —1) C X —T. Or better still, that
T = B(0,1)N (X — B(0,1)).

The set Sy = {ciskf | k € N} is dense in T if 7/ is irrational: just as before, for any S € R and
for any § > 0 there are two integers n and m with n > 0 such that |n+ 2mm/0 — 3/0| < 6/ 16| or
[nd + 2mm — G| < 6, then if t = cis € T, for any € > 0 there are two integers n and m with n > 0
such that |cis(nf + 2mm) — cis B = |cisnf — t| < e.

The set Sy = {ciskf | k € N} is not dense in T if 7/0 is rational: if 7/0 = p/q with p € Z and
q € Z, then cis kf = cis kqgm /p which can take only 2p distinct values for k =0,1,...,2p — 1.

So the set Sp = {ciskf | k € N} is dense in T if and only if 7/ is irrational.

2.2 Connectedness

2.2.1 Exercise

(a) If A is an interval, here it means that there are two real numbers a and 8 and one of the following
cases holds: A = (o, ), A = (o, (], A = [, 8), A = [, ]. In the first case, for instance, if
a,be Aand a < b, thena>aand b < 3,s0if a <z < b then also x > o and z < 3, so x € A.
The same in the other cases.

(b) Simply apply Theorem 2.3.

2.2.2 Exercise

Let ¢(s) = sb+ (1 — s)a for s € [0,1]. If sp € S = {s€[0,1] | ¢(s) € A}, then @ = ¢(so) € A4; as A
is an open subset of G, there is a ball Bg(a,r) = {z € G| |z —a| < r} such that Bg(a,r) C A. So if
|s — so| < r/|b—al, then |¢(s) — ¢(so)| < r, which yields that ¢(s) € A, and we get B(sg,r/|b—al) C
S.

The same for 7'

2.2.3 Exercise

(a) X is connected. Let A={z€C| [z] <1} and B={z€C| [z —2| <1}; then X = AUB. As
connected and so is A by Proposition 2.8 (a); B is connected; 1 € AN B, so by Lemma 2.6 X is
connected.
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(b) X is not connected. If z € [0,1), the component of z must be an interval I and [0,1) C I; since
also I C X, the only possibility is I = [0, 1).

Since for n > 1

1 1 1 1
<1+ =<1t —F o <1 — (2.19)
n n

1 1
1+ ——<1+4 -
+n+1 +n+ 2n(n —1) n—1

2n(n+1)
and

1 1
2n(n+1) < 2n(n —1)

(2.20)

we have B(Z, m) NX = {1+ 1} so the component of 1 + L is {1+ 1}

(¢) X is not connected and its components are
Cp={rcisf | 2kn <8 <2(k+1)m, 0 <r <0+2m ke N} (2.21)

but to prove it without arcwise connectedness would be a folly.

2.2.4 Exercise

If D were not connected, there would be at least two components Cy and Cs of D. If x1 € Cy, x5 € Co,
there must be D;, and D, such that x; € D;, and x2 € Dj,, and since D;, and Dj, are connected, we
have Dj, C Dy and Dj, C Dy. But since Dj, N D;, # 0, also Dy N Dy # () holds, which is impossible.

2.2.5 Exercise

Take a € F and for € > 0 call A, the set of all points b of F' such that there are points zg, z1,..., 2,
in F with 20 = a, 2z, = b and d(zx_1,2;) < € for 1 < k < n. The set A, is open in F, since if
x € Ac and y € Bp(x,¢) clearly y € A.. But F — A, is open in F too: if x € F — A, and there
were y € A. N Bp(x,€) then € A, a contradiction, so Bp(z,¢) C F — A.. Now we have that if
F — A, # () then F is not connected, since F it is connected, then F' — A, = () and A = F. Being
€ any positive real number, the statement is proved. It looks like the fact that F' is closed is not needed.

The set F = {(z,y) € R? |z # 0,y = 1/ ||} satisfies the given condition and is closed, but it is
not connected.

2.3 Sequences and completness

2.3.1 Exercise

(a) If A is closed, by Proposition 3.2 A contains all the points to which some sequence in A converges,
in particular all its limit points.

If Ais not closed, take z € A—A. Ifzg € A, thend(z, 7o) > 0, s0o take ny = min{n € N | 1/n < d(z,z¢)};
since 29 ¢ B(x,1/ny), there is a point x; such that z1 € Ba(x,1/n1) and 21 # x9. Going on in

this way, we have a sequence xj, in A whose points are all distinct, a sequence of natural numbers

ny such that n, < nyyq for each k, and limz;, = z: if € > 0, there is k such that 1/n; < €, so

xg € Ba(x,€). This shows that x is a limit point of A, so if A is not closed, it does not contain

all its limit points.

(b) Call A! the set of all limit points of A. From the proof of point (a) we know that if z € A — A
then z € A, so A C AU Al

Now take z € AUA". If z € A, then x € A. If z ¢ A, there is a ball B(z,r) of X such that
B(x,r)NA=10,sox¢ Al; then x € A" implies x € A. Eventually AU A C A.

2.3.2 Exercise

If z,, is a Cauchy sequence in Y, it is a Cauchy sequence in X too, since the metric is the same, so
limz, = z for some x € X. By Proposition 3.2 x € Y, and Y is complete.
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2.3.3 Exercise

If € A and y € A, for every € > 0 there are two points € A and 3 € A such that d(x,Z) < € and
d(y,y) < e. Then for every € > 0 we have d(x, y) < d(z,z)+d(Z,y)+d(y,y) < d(Z,y)+2¢ < diam A+2e,

which implies d(z,y) < diam A, whence diam A < diam A. Since A C A we have also diam A < diam A,
then diam A = diam A.

2.3.4 Exercise
We know that
2|zn — 2|

d(zn,2) = . (2.22)
V@ D)+ ]2

Since ||zn| — |2|| < |2n — 2|, if |2, — 2| — 0 then |z,| — |#|, and d(z,,z) — 0. Since d(z,00) —d(zy, z) <
d(zn,0) < d(zpn, 2) + d(z,00), if d(2z,, z) — 0 then d(z,,0) — d(z,00), or

2 2
—
Vitlal 14

which yields again |z,| — |z| and |z, — z| = d(zn,z)\/(l + |21 + |2]?) — 0.

(2.23)

Now suppose | z,| — +oc. Since for z € C and v € C we have the inequality |z — v| < v24/]z]* + |,
we get for n € N, m € N that

\@\/ |Zn|2 + |Zm‘2
d(Zn,Zm) <

V@ 201+ |znl)
2 2
1 1
ﬁ\/ (=) + (=)
<
2 2
1 1
) ()
2 2
1 1
< (2) + (&)
Since for any € > 0 there is N such that k£ > N implies |z,| > 2/¢, for n > N and m > N we have

A(Zn, 2m) < V21/2(€/2)? = €. (2.24)

Since

d(zp,00) = __z (2.25)

1+ |Zn|2

of course if |z,| — 400 then d(z,,00) — 0, or z, — 00. So z, surely is convergent in Cy.

2.3.5 Exercise

Let x,, be a convergent sequence in any metric space (X, d), and lim z,, = x. This means that for every
€ > 0 there is N € N such that n > N implies d(z,,x) < ¢/2. Then for n > N and m > N we have
A(Tpy ) < d(Tp,x) + d(Tm, ) = €.

2.3.6 Exercise

Any open proper subset of R™, for example B(O, r) with » > 0, or the half-space {(x1,...,x,) € R | 1 > 0}.
Also (C,d) where d is the metric on C.
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2.3.7 Exercise

Take
2|z —y|
d(x,y) = . 2.26
)= e (2:26)
This amounts to project X € S — {(0,1)}, where
St ={(a1,22) €R? | 2] +- 23 =1}, (2.27)

onto the x; axis, and take as distance between two points on that axis the Euclidean distance between
the corresponding points on S'. Since d(z,y) < 2|z —y|, it is obvious that |z —y| — 0 implies
d(z,y) — 0.

To show the other implication, this time without using the point co, we start proving the inequality

[z —y| 1 1
_ 2.28
Va2 + 12 +1 7 Va2 +1 2 +1 (228)
that holds for every x € R and y € R; if © = —y the inequality becomes
|z|
2.29
2 +1 " (2.29)
which is true; if x # —y
— 2 _ 2 2 _ .2
|z + lz+yl |zl + 1yl
22—y
TV 142+ 1
‘\/x2+1—\/y2+1H\/x2+1+\/y2+1‘
‘\/x2+1+\/y2+1‘
:‘\/x2+1—\/y2+1’
whence
o—yl VT VT 1 ! (2.30)
V2 A1y 41 Vi1l (Va2 +1 N ‘
So if d(zy, ) — 0 we have
1 1 |z, — x| 1
- < = —d(xp,x 2.31
Vai+1l V2417 a2+ 122+ 1 2 ( ) (2:31)

which yields \/x% +1—+v22+1and

1
|z, — x| = 5\/a:%+1\/x2+1d(a:n,x) — 0. (2.32)

To show that z,, is a Cauchy sequence if |z,| — 0, we use once again the inequality

(29, Tm) < \/5\/(@)2 + (|;n|)2 (2.33)

2.3.8 Exercise

Take ¢ > 0. Suppose limz,, = z, then there is an N; € N such that k > Ny implies d(zy,,z) < §
Since z,, is a Cauchy sequence, there is an Ny € N such that n > Ny and m > Ny implies d(xy,, z,,) < 5-
Also, there is an N3 € N such that k& > N3 implies ny > Ny. If N = max {Ny, N3}, then k£ > N implies

A(@n,@) < d(@n,n,) + d(n, @) < (g, 20) + 5

for every n € N, and with ny > Na, so if n > Ny we have d(z,,z) < e.

(2.34)
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2.4 Compactness

2.4.1 Exercise

We need to prove that if for any collection F of closed subset of K with the finite intersection property
results

(N C#0 (2.35)

CeF
then K is compact. Suppose there are open subsets A; of X such that
KclJA (2.36)
i€l
and that for any finite subset J of I results
K¢ U Aj; (2.37)
jeJ
then for any finite subset J of I there is z € K such that
z¢ |4 (2.38)
jed

which implies that for every j € J x € K — Aj; the sets K — A; = K N (X — A;) are closed in K, so
what we have just proved is that the collection K — A; | j € J has the finite intersection property; by
hypothesis, there is a y such that

ye (VK—-4;=K-|]4 (2.39)

jeJ jeJ
and this is a contradiction.

2.4.2 Exercise

Since p € R and ¢ € R it is obvious that diam R > d(p,q). If t € Rand y € R, then fori =1,...,n

we have p; < x; < ¢; and p; <y; < ¢; whence |y; —x;| < ¢; —p; fori=1,...,n and
d(z,y) = | > (i —2)* < | D> (@ —pi)2d(p, q) (2.40)
i=1 i=1

so diam R < d(p, q).

2.4.3 Exercise
Choose m € N such that d(a,b)/m < € and take the points

by — by —
pkrkn) (al S S Rl S| kn) L 0<ki,... Kk, <m. (2.41)
m
Define the m™ rectangles
RFvkn) = sen [plkokn) gtk t ) B < gy k, <m— L (2.42)

These rectangles are all subsets of F', and

diam R(kl,.“,kn) _ d(x(kl ----- kn) l,(_k1+1 ----- k71+1))

7 [t

n 2
_ (k?l"l‘lau-:kn"!‘l) (k17"-ak71) _
= E (1’1 - ‘Ti ==

_ zn: (b; — a;)? _ d(a,b) <

\ , m2 m
i=1
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Furthermore,

R= RF1seeoskn) (2.43)
(kl,“.,kn):(o,..‘,o)

In fact, if x € RF1s-skn) then, since 0 < k; <m — 1, for 1 <7 <n we have

b; — a;

b; — a;
ai<a+——k <wz; <a;+

(ki +1) < b;; (2.44)

if x € R, then a; < x; < b; for 0 < i < n, so there surely are k; for 0 < i < n such that

bi—a' bi—ai

a; + ki <@ <ai +

(ki +1). (2.45)

Eventually, if A is a set, x € A and diam A = r then A C B(x,r), since for every y € A we have
d(z,y) <r

2.4.4 Exercise

If F' is union of a finite number of compact set, say
F=JF (2.46)
i=1

and A;, j € J is a collection of open sets such that

FclJ4 (2.47)

jeJ
then also

FclJ4; i=1,....n (2.48)
jeJ

holds, so for each i = ...,n there is a finite subset J; of J such that

rclJ4, i=1...m (2.49)
jeJ;

the set J = Ul _,J; is also finite, and

FclJ4a; (2.50)

jeT
2.4.5 Exercise
First, we observe that for every z,y,h € X we have d(x,y) = d(z + h,y + h), since

d(l‘ y) = bup ‘yn - xn| = sup |(yn + hn) (xn + hn)| =

neN
=sup |(y + 1) — (2 + h)n| = d(z + h,y + h).
neN
Then, that
(z,€) C B(xg, 9 (2.51)
k=1

if and only if

oegU (z — ,0). (2.52)
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Indeed suppose the latter inclusion holds. Then y € B(z,¢) = d(z,y) < e=d(0,y—z) <e=y—z €

B(0,¢) so
y—x € U B(xg — x,9) (2.53)
k=1
and there is k such that d(zx — =,y — z) = d(xg,y) < § whence y € B(zy,d) and
e |J B(ax.9) (2.54)
k=1

and the former inclusion also holds. The same to prove that the former inclusion implies the latter
one.

So we have proved that for every x € X B(z,¢) is totally bounded if and only if B(0,¢) is totally
bounded.

Now we prove that X is complete. Take 2(*) in X: that is, z(*) is a sequence, whose elements are
sequences of complex numbers; suppose z(*) is Cauchy, that is, for every § > 0 there is N € N such
that h,l > N implies d(x(h),x(l)) = SUP,eN ac(h) 55)‘ < §. This means that for every n € N the

sequence in C: k — x,(lk) is Cauchy, and, since C is complete, there is a complex number x,, such that

khm z®) =g, (2.55)
— 400

Now we show that z(®) converges to  in X: again since z(*) is Cauchy, for every § > 0 there is N € N
such that h,1 > N implies d(z"),z()) < §, in particular, for every h > N and for every n € N

eM — x| <6 (2.56)

lim |z(®) — x(l)‘ =
l—+o0 n n

which shows that for every h > N

d(z™ z,,) = sup ‘x;h) - xn‘ < 4. (2.57)
neN

Since we proved that X is complete and B(0,€) is closed in X, B(0,¢) is also complete.
Now define the sequence z(*) as:

xy —{ 0 ifnthk (2.58)

Clearly for every k € N z(*) € B(0,¢) and if h # k then d(z(®),2(") = ¢, so for any point = € B(0, €)

the ball B (x’f/ 2) contains at most only one point z®) | and there is no finite number of such balls that
contains all B(0,¢).

2.4.6 Exercise

Suppose A is a totally bounded subset of a metric space (X,d) and choose ¢ > 0. There are points
Tk, k=1,...,n in A such that

Q (xk ) (2.59)

SO

CJ B (on:5 )QCJ (@, €). (2.60)

k=1

2.5 Continuity

2.5.1 Exercise

(a) = (b) Take € > 0. Since f is continuous at a, there is § such that 0 < d(a,z) < § = p(a, f(z)) < €.
So z € Bx(a,8) = f(x) € Ba(a,e) = z € f~1(Ba(a,¢)).
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(b) = (¢) Take x,, in X such that limz,, = a and € > 0. By hypothesis there is a ball Bx(a, §) such that
Bx(a,6) C f~Y(Ba(a,€)) and there is N € N such that n > N = d(a,r,) < § = z, € Bx(a,d)
son > N = f(z,) € Ba(a,€) = pla,z,) < €.

(¢) = (a) Suppose f is not continuous at a, that is, there is € > 0 such that for every 6 > 0 there is
x € X such that d(a,z) < § and p(«, f(x)) > €. In particular for every n € N we can choose
xn € X such that d(a,z,) < 1/n and p(«, f(z,)) > €. Clearly limz,, = a but f(z,) either has
no limit or its limit is not a.

2.5.2 Exercise

If f,g: X — C are uniformly continuous maps for every € > 0 there are §; > 0 and d2 > 0 such that
for each z,y € X d(z,y) < 61 = |f(z) — f(y)| < €/2 and d(z,y) < d2 = |g(x) — g(y)| < €/2. Then for
each z,y € X d(z,y) < min{d,d2} = [(f +9)(=) = (f +9)(W)| = |(f(z) = f(¥)) + (9(z) —g(¥))| <
[f(@) = f(y)l +19(z) —g(y)| <e

If f,g: X — C are Lipschitz maps there are M; > 0,Ms > 0 such that for all z,y € X

[f(x) = f(y)| < Mid(z,y) and [g(x) — g(y)| < Mad(z,y),s0 [(f + 9)(x) = (f + 9)(W)| = [(f(z) = f(y)) + (9(z) —9(y))| <

Myd(z,y) + Mad(z,y) = (My + Mz)d(x,y).

2.5.3 Exercise

If f,g: X — C are bounded uniformly continuous maps then there are M; > 0 and My > 0 such
that for every x € X we have |f(z)| < M; and [g(z)| < Ma; furthermore for every e > 0 there are
91 > 0 and dy > 0 such that for each z,y € X d(z,y) < 01 = |f(x) — f(y)| < €/(M; + M) and
d(z,y) < by = |g(x) = g(y)| < /(M + Ma).

Now if d(z,y) < min {d1,d2}

[(F9) (@) = (fo) W) = I[f (x) = fFW)g(z) + [9(x) — g(w)]f(y)] <
< [f(@) = fWlg@)] + lg(=) — 9@ [f(y)] <

€ €
M + M. =€
"My + M, M, + M, ‘

IN

If f,g: X — C are bounded Lipschitz maps there are M; > 0 and M, > 0 such that for every
x € X we have |f(z)] < My and |g(z)| < My; furthermore there are Ny > 0, Ny > 0 such that for all

r,y € X |f(z) — f(y)| < Nid(z,y) and |g(z) — g(y)| < Nad(z,y).
So

I(fg)(x) — (fa) )| = I[f(x) — f(¥)]g(x) + [g(x) — g(y)]f(y)] <
< Nyd(z,y)M; + Nad(z,y) My =
= (N1 My + NoMy)d(z,y).

2.5.4 Exercise

Ifg: X —-Y and f:Y — Z are uniformly continuous maps, for every ¢ > 0 there is § > 0 such that
dy(z,y) < d=dz(f(x), f(y)) <€, and there is § > 0 such that dx (u,v) < 0 = dy (g(u), g(v)) <, so

dx (u,v) <0 = dz(f(g(u)) = f(g(v))) = dz((f o g)(u) = (fog)(v)) <e
If f: X Y and g: Y — Z are Lipschitz maps, there are M and N such that dz(f(z), f(y)) <
Ndy (z,y) for every z,y € Y and dy (g(u), g(v)) < Mdx (u,v) for every u,v € X, so

dz((f 0 9)(w), (f  9)(v)) = dz(F(g(w), F(g(v))) <
< Ny (g(u), g(v)) < NMdx (u,v).

2.5.5 Exercise

Take € > 0. Since f is uniformly continuous, there is § such that d(z,y) < § = d(f(x), f(y)) < €; since
T, is a Cauchy sequence there is i € N such that n > n,m > n = d(z,, Tm) < § = d(f(zn), f(Tm)) <
€.

No. Take X = R — {0}, @ =R, =, = 1/n, f(z) = 1/z. Clearly x, is a Cauchy sequence, since
it is convergent in R, and f is continuous, but f(z,) = n is not a Cauchy sequence, since it is not
convergent.
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2.5.6 Exercise

Since D is dense in X, for every x € X there is a sequence x,, in D such that limx, = x. Exercise
5 allows to say that f(x,) is a Cauchy sequence in Q, and since 2 is complete, f(x,) is convergent.
Let’s show that limz,, = limy,, = lim f(z,) = lim f(y,). Say [ = limz,, = limy,, and take ¢ > 0.
Since f is uniformly continuous, there is ¢ such that d(z,y) < § = d(f(x), f(y)) < ¢, and there
are N1 € N and Ny € N such that n > Ny = d(l,z,) < 6/2 and m > Ny = d(l,yn) < §/2. So
k > max {Ny, No} = d(ag,yx) < d(l,zx) + d(l,yx) = 6 and k > max {Ny, No} = d(f(xk), f(yr)) <€,
which yields also d(lim zy, limyg) < €. Since € is any positove real number, this proves that the two
limits are equal.

Now we can define g: X — Q as g(z) = lim f(zx) where zj is any sequence in D such that
limzy, = x. To see that gp = f is easy: if x € D take x;, = z for all k € N. We have still to
show that g is uniformly continuous. Take € > 0; since f is uniformly continuos there is ¢ such that
d(u,v) < 6 = d(f(u), f(v)) < e for any two points u,v € D; take xz,y € X such that d(z,y) < §/3,
and let x,yr be sequences in D such that limz, = z, limy, = y, so there are N; € N and N, € N
such that n > Ny = d(x,x,) < §/3 and m > Ny = d(y,ym) < 0/3; then if N = max {Ny, No} we
have k > N = d(zg, yr) < d(z,zx) + d(x,y) + d(y, yx) < 0. So for k > N we have also d(g(z),g(y)) <
alg(@), Fer)) + d(F(@e), f(9e)) + dlg(y)s f(mr)) < dlg(a), Flar)) + € + dlg(y), f(u)). Since this in-
equality holds for every k > N, eventually we get, for every x,y € X such that d(z,y) < /3,

d(g(x),9(y)) <lim[d(g(x), f(x1)) + €+ d(g(y), f(yx))] = €

2.5.7 Exercise

Of course it is enough to prove the statement in the case that the polygon P is made of only one
segment. Let L = d(P,C — G). Since C — G is closed, P is compact by Theorem 4.10, and C — G
and P are disjoint, then L > 0. Take n € N such that r = d(a,b)/n < L/2, put 2o = a,2, = b
and choose n — 1 points #; 1 < i < n —1 on P such that d(x;,z;41) = r,0 < i < n—1. We have
B(z;, L) CG,0 <i<n-—1andsince r < L also z;11 € B(x;,L),0 <i <n—1. Now it is obvious that
x; and ;41 can be joined by a polygon which is composed of one line segment parallel to the real axis
and of one line segment parallel to the imaginary axis, so a and b can be joined by a polygon which is
composed of n line segments parallel to the real axis and of n line segments parallel to the imaginary
axis.
N.B. What has Theorem 5.15 got to do with this proof?

2.5.8 Exercise

For every € > 0 we have

xc|J s (BQ (w%)) (2.61)

weN

since this is an open cover of X, which is compact and so sequentially compact by Theorem 4.9,
Lebesgue’s Covering Lemma says that there is a § such that for every 2 € X we have Bx(z,0) C
f1(Ba(w,€/2)) for some w € Q. Now if z,y € X are such that dx(z,y) < 6, surely y € Bx(x,9),
so both z € f1(Bg(w,€e/2)) and y € f~1(Bq(w,€e/2)) hold for some w € , which implies both
f(z) € Ba(w,e/2) and f(y) € Ba(w,¢/2), that is, da(f(x), f(y)) <

2.5.9 Exercise

If X is disconnected, then X =Y U Z where Y and Z are open, disjoint and not empty; clearly, they
are also closed. By Proposition 4.3 Y is compact (also Z, but we don’t need it). There are two points
y €Y and z € Z. Now take points zo, . ..,z, with o = y and x,, = z. Surely there is k& such that zj
is the last among these points which belongs to Y, that is

k=max{keN |z, €Y} (2.62)
so x € Z if k > k. By Theorem 5.17 r = d(Y,Z) > 0, then d(zj,2;,,) > r. Conclusion: no

matter how the points xj are chosen, there are always two of them whose sisctance is not less than r,
contradicting the hypothesis.
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2.5.10 Exercise

If x € X there is a sequence z,, in D such that limz,, = . So lim f(x,) = f(x) and lim g(z,,) = g(x),
since f and g are continuous. But for every n € N we have f(z,) = g(x,,), since x,, € D, so f(z) = g(x).
That the function whose existence is proved in Exercise 6 is unique is an immediate consequence.

2.6 Uniform convergence

2.6.1 Exercise

Exactly as in the proof of Theorem 6.1. Take ¢ > 0, since f = lim f,, there is n such that
p(f(x), fn(x)) < ¢/3 for all z € X; since f,, is uniformly continuous, there is § such that d(x,y) < ¢ im-
plies p(fn(x), fa(y)) < €/3, so if d(x,y) < 6 we have p(f(x), f(y)) < p(f(2), (@) + p(fn(z), fu(y)) +
p(f(y), fn(y)) <e.

If there are M, such that p(fn(2), fn(y) < M,d(z,y) for every z,y € X, sup,,cy M, = M and
f =Ilim f,,, then for every z,y € X and for every n € N

p(f(x), f(y) < p(f(x), fu(®)) + p(fu(z), fu(y) + p(f(¥), fu(y)) <
< p(f(@), fu(x)) + p(f(y), fuly)) + Md(x,y)
so also
p(f(x), f(y)) <Uml[p(f(x), fu(x)) + p(f(Y), fn(y)) + Md(z,y)] = Md(z,y). (2.63)

Take X = [0,1], Q
Lipschitz, since for z € |

R, both with the Euclidean distance, and f,(z) = \/x 4+ 1/n. Each f, is
1]

(=]

[fn(2) = fn(y)| < = [z =y (2.64)

oI

(note that sup M,, = +00), lim f,,(z) = /= and the convergence is uniform since for z € [0, 1]

m —Vz| < \/g (2.65)

but the limit f is not Lipschitz; for f(z) — f(0) = /z, and if for an M we had /z < Mz then
1/v/x < M for every x € [0, 1], which clearly is false.




Chapter 3

Elementary Properties and
Examples of Analytic Functions

3.1 Power series

3.1.1 Exercise

Using the Identity we have

k k k—n
> leal —Z Zahbn W < Zzlahi\bn al =22 D lan lon] <
n=0 n=0 |h= n=0 h= n=0 h=0

< ZZ lan| |bn| = Z |an | Z |0 |

n=0 h=0

and this shows that >_ ¢, is absolutely convergent.
Now, let a, = x, + iy, and b, = w, + iv,. Then the series > Xn, > UYn, . Un, Y. v, are all
absolutely convergent, since for any complex number z we have Rez < |z| and Jmz < |z|. Let

“+o0o “+o0 +oo +oo
kazX, Zysz, Zusz, kazv. (3.1)
k=0 k=0 k=0 k=0
Now
k

cp = Zahbk h= Z Tp + iyn) (Uk—htive_p,) =

h=
k k
= (Z TpUg—h — Z yh'Uk—h> +1 <Z YnUk—h + Z l‘h”k—h)
h=0 h=0 h=0 h=0

and

n n k n k
Ck = <Z Z ThUk—h — Z thvkh> +

k=0 k=0 h=0 k=0 h=0
n k n k
+14 E 5 YhUg—h + E E TpVk—h | -
k=0 h=0 k=0 h=0

As it is known from the real case, the four series above converge to the corrisponding products, that is

Y= (XU -YV)+i(YU ~ XV) = (X +iY)(U +iV) =

() &)
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3.1.2 Exercise

What is left to prove follows from Proposition 1.5 and the corresponding statement for the sum of two
absolutely convergent series.

3.1.3 Exercise

Straightforwardly:

lim sup(a,, + b,) = limsup {a, + b, } < lim <sup {an} + sup {bn}> =
n>k n>k n>k
= limsup a,, + limsup b,,.

The same for liminf.

3.1.4 Exercise

Even straightforwardlier: for every k € N it is obvious that

inf {a,} <sup{a,} (3.2)
nzk n>k
whence
lim inf {a,} < limsup{a,}. (3.3)
nxk n>k

3.1.5 Exercise

Let’s show that liminf a,, > a. If [; = liminf a,, < a, then there would be N such that

. a+1;
nHzlJfV {an} < 5 (3.4)
which implies that for every k > N there is k > k such that
a+l;
ap < <a (3.5)

so it couldn’t be a = lim a,,.
Analogously limsup a,, < a, so liminf a,, > limsupa,. Since the opposite inequality always holds,
this proves that liminf a,, = lim sup a.,.

3.1.6 Exercise

(a) lim {/[a"| = |a, so R = 1.
(b) lim {/|a"*| =lim|a|" so

e R=+o0if |a] <1
e R=0if|a| >1
e R=1if|a| =1

(c) lim ¥/]k"| = |k| so R = \Til

1 if k =n! for some n € N

(d) The coefficients are: aj = { 0 otherwise

. So {/|ak| has a subsequence which

takes always the value 1 and a subsequence which takes always the value 0 . Hence limsup {/|ax| =
land R=1.
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3.1.7 Exercise

The coeflicients of this series are:

n .
0 otherwise

o — { (=D k= n(n+ 1) for some n € N
and accordingly

if Kk =n(n+1) for some n € N

1
Yan| =4 nrwin . 3.7
|a] { ; (3.7)

otherwise

Then for any h € N, h > 2

sup{f/@}z#1 ifnn+1)<h<(n+1)(n+2) (3.8)

k>h nnn+1)

since for n > 2 the sequence n""+1 is decreasing, as can be easily seen deriving the function x=G+D .

So limsup ¥/|ax| = 1.

If z=1, or z = —1, being n(n + 1) always even, the series becomes

+
8

(_;)” (3.9)

I
—

n

which is convergent by Leibnitz criterion.
If z = 1, the series becomes

+oo
11 1 1 dn+1
TR L R O o Lk 3.10
2 3715 n:o( @+ 1 (3.10)

which again is convergent by Leibnitz criterion.

3.2 Analytic functions

3.2.1 Exercise

Writing explicitly the real and immaginary parts of the function:

flx+1iy) = u(z,y) + w(x,y) (3.11)

where

and

so the Cauchy-Riemann equations can be satisfied only for (z,y) = (0,0).
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3.2.2 Exercise
Suppose a > 0 and b > 0. Since limb,, = b and limsupa, = a, then Vn > 03dn; :n >n; = b, <b+n
and Vn > 03dng :n > ne = a, < a+ 1.
Now
anbp = bp(an —a) + a(b, — ) + ab. (3.12)
Since b > 0, there is an n3 € N such that n > nzg = b,, > 0, so for n > max {n;, na, n3} we have

anby < byn + an + ab. (3.13)

Furthermore, there is M > 0 such that b, < M for every n, so

anbp, < (M + a)n + ab. (3.14)
If € > 0, take
€
_ 3.15
"= M+ta (3.15)

and for n > max {n,ns,n3} we have
anby, < ab+e. (3.16)

Since lim b,, = b and limsup a,, = a, then V8 > 03ny : n > n; = b, > b—0 and VO > 0,Vn € Ndn, :
ng >N Aap, > a— 0, so for i > max{ni,n3} there is ny > 7 such that

Gnybny > —byn — an + abd. (3.17)

Furthermore, there is ny such that n > ny = b, > b/2; so now we have that for 7 > max {n,ns,ns}
there is no > n such that

b
Gpybp, > — <2 + a) 1+ ab. (3.18)
If € > 0, take
€
= .1
K b/2+a (3:.19)

and for 7 > max {ny,ns,n4} there is no > n such that
Apybn, > ab—e. (3.20)

Of course in the same way it can be proved that, under the same hypotheses, also liminf(a,b,) =
lim b, lim inf a,, holds.
Now suppose a < 0 and b > 0. Then

—a = liminf(—a,) >0 (3.21)
and for what we just proved,
lim sup(a,by,) = — liminf(—a,b,) = ab. (3.22)
If b < 0, then —b = lim(—b,,) > 0 and

limsup(a,b,) = — liminf(—a,b,) = — liminf(a,(-b,)) =

= —liminf a, lim(—b,) = —bliminf a,

supposing both liminf a,, and lim sup a,, are finite.

3.2.3 Exercise

What’s that supposed to mean? That is, starting from where? After all, it’s known from real analysis,
isn’t it?
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3.2.4 Exercise

Since
too Z2n
cosz = Z(—l)” )l (3.23)
n=0 ’

then, by Proposition 2.5

too =1 I »2n—1
(cosz) = 2(—1)”2nm = Zl(—l)"m = —sin 2. (3.24)
Since
: 'S 41 2t
sinz = ;(—1)" o1 (3.25)

then, by Proposition 2.5

+oo 2n—2 too 2n—2

(Sin Z)/ _ Z(_l)n-&-l(2n _ l)m — Z(_l)n—&-lh =

n=1 n=1
+oo 2n
z
-5
n=0
3.2.5 Exercise
We have
+00 o \p  F00 2h+1
iz _ (iz) 2k 2k+1_*
o B S S S -
+oo kz2k _+<>O ) »2k+1 o
=Y (-1) ﬁ_‘_lz(_l) @hr) =cosz+ isinz,
k=0 =0
—iz __ = (_iz)n _ = . nzn _
RS-
n=0 n=0
+oo
k:O 2k:' (2k + 1)!
+oo 2k +oo 2k+1
— K2 IR A o
_k_o( 1) 7] zkz_o( 1) (2k+1)!—cosz isin z.

3.2.6 Exercise

1. If et = e%(cosy + isiny) = i, then it must be e*cosy = 0, e*siny = 1, and e* = |i| = 1, so
x = 0; then cosy = 0 and siny = 1, so y = § + 2kw. Hence

{zeC|e —z}—{(2+2k7r)|k€Z}. (3.26)
2. If et = e%(cosy + isiny) = —1 we have again = 0, and cosy = —1, siny = 0, hence
{zeCl|e*=-1}={i(r+2kn) |k €Z}. (3.27)
3. Now
3T
{Z€C|ez——l}—{ <2+2k7r)|k€Z}. (3.28)
4. Finally

{2 €C|e* =0} = {i (2kn) |k € Z}. (3.29)
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3.2.7 Exercise
On the one hand
ei(z+w) + efi(zntw) etz piw +67izefiw

2 - 2

cos(z +w) = (3.30)

on the other hand

6iz + efiz 6iw + e*iw

COS zZ CosSw = =
2 2
ezzezw _|’_ e—’LZe—H,U +e—zzezw _|_eZZe—ZU}
4
eiz _ efiz eiw _ efiw
sinzsinw = - - =
21 21
_e'LZe’Lw _ e—ZZe—'L'lU + e—lzezw + elze—l’u)
4

$0 cos(z + w) = coszcosw — sin zsinw. In a similar way it is proved that sin(z + w) = sinz cosw +
cos zsinw.

3.2.8 Exercise

Of course
fanz = o’ (3.31)
cos z
is defined and analytic where cosz # 0. Now cosz = 0 means e?* + e~ % = 0, that is e?’* = —1; by
Exercise 6 point 2 that means 2iz = i(7 4+ 2k7), and
=" 4k (3.32)

2

3.2.9 Exercise

First, observe that if z, — z, then |z,| — |z|: it follows straight from the inequality ||z,|— |z|| <
|2, — z|. This yields that r, — r.
Now
2y — 2 =1 ( 2 ei(0n—6) _ 1) (3.33)
r

and since z, —z — 0, and re’® # 0, then we must have 2% =0 —1 — 0; but == — 1,50 €= — 1,
wich yields (6,, — 0) — 2kx for some k € Z. Since by hypothesis —7 < § < 7 and —7 < 6,, < 7, the
only possibility is (6,, — 8) — 0, which means 6,, — 6.

3.2.10 Exercise

As in Proof of Proposition 2.20, take a € G, s € C such that s # 0 and a+s € G. Now g(f(a)) = h(a),
g(f(a+s)) = h(a+ s) and since h is injective and s # 0, we have g(f(a + s)) # g(f(a)) which yields
fla+s) — f(a) #0. Now

9(f(a+s)) —g(f(a)) _ hla+s)—h(a)

: - ; (3.34)
9(fla+s)) —g(f(a)) fla+s)—fla) _hla+s)—h(a)
Flats)— f(a) ST e (3:35)
since f is continuous, f(a + s) — f(a) as s — 0, and this gives
_g(fla+ts) —g(fa)) _
lim fats) —fla ¢ (f(a)) (3.36)
and since ¢'(f(a)) # 0 we finally get that
f’(a) lim f(a + S) B f(a) _ h/(a) (337)

=0 s = 7))
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3.2.11 Exercise

Isn’t it obvious? If f is a branch of the logarithm, then e/(*) = 2 for any z € G. So e®/(*) = (e/(2))» =
z" for any z € G.

3.2.12 Exercise
By definition

L3 phlogs (3.38)
where log is the principal branch of the logarithm, that is, if

G=C—-{z€eC|Tmz#0VRez >0} (3.39)
then log : G — C, and if z = re? with —7 < § < 7 then log(z) = log(r) + i6. Then

L% _ phlogz _  h(logr+if) _ VT (COS (Z) + isin (Z)) (3.40)

and now
T 0 7
—_— < =< = 41
2<2<2 (3.41)

so the real part of this complex number is positive.

3.2.13 Exercise
If log is the principal branch of the logarithm, and

2kx ;

fk(z):e%IOgZeTl k=0,1,....n—-1 z€e@G (3.42)
then
(fr(2)" =2 (3.43)

and the functions fj are all distinct and analytic on G. On the other hand, if g and h are two any
functios that satisfy the same conditions, then

F(z) = 28 (3.44)

defines an analytic function on G, since h(z) # 0 on G. Then

F(z)" = (ZE’Z) = 282 =1 (3.45)

which yields that for any z € G there is an integer k such that 0 <k <n —1 and

9(z) RLY

—X =en . 3.46

n) (3.46)
But F' is continuous, so Jm F' is connected, therefore there is one integer k that satisfies the last
condition for all z € GG, otherwise Jm F' would contain at least two distinct isolated points, and would
not be connected. In particular, if f is any function satisfying the wanted conditions, then

J(2) e €@ (3.47)

6% log z

for some £k =0,1,...,n—1,s0 f = fi.

3.2.14 Exercise
Let

f(2) = fle +iy) = u(z,y) +iv(z,y) (3.48)
then by hypothesis v = 0 in G. By the Cauchy-Riemann equations

Uy = vy =0

Uy = —Vy =0

in G, and since G is connected, it follows that u, and then f, is constant.
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3.2.15 Exercise
Of course, if z # 0

1 1 x oy
exp (Z) = exp (l‘ T 2y> = exp <M> exp <_Z;L'2—|—y2> . (349)

The function

xT

== 3.50
f@)= (3.50)
takes any real value k on the circle
1\* , 1
N [ — .01
(J: 2k> Sl A= 0 (3.51)
and the function
Y
== 3.52
f@) = s (352

takes any real value h on the circle

1\° 1
(y — 2h> + 22 — =0 (3.53)

All these circles go through (0, 0), which means that for any r > 0, in the set {0 < |z| < r} the function
exp(1/z) can take any possible value re’® with r > 0. That is, A = C — 0.

3.2.16 Exercise

For instance

G={z€C|Imz#0VRez>1VRez < —1} (3.54)
and
2
£(2) = exp <1Og(l2z)>
9(2) = exp (bg(l;ZQ) - m’) :

To see that f(2)? = g(z)? =1 — 22 is trivial.

Now what can possibly mean that G is maximal? Maybe that if H O G, h: H — C such that
h(z)? =1 — 2% in H and for instance hic = f, then H = G. To prove this, suppose there is 29 € H
but zp ¢ G. Then zp = (x,0) with either > 1 or x < —1. Say # > 1. For —7 < 6 < 7 take

h(0) = exp <log (= _21)ew il 1)> ; (3.55)
if 6 # 0 then h(6) € G, h(0) = z and h is obviously continuous. Now
oo(] — 2 oo(— (22 — 1)ei®
0y o (KA _ o (B 00y
B log((z? — 1)ei(9_”))
e (B0
Ifo<6<mthen -7 <80 —m<0so0
1 , ,
f(h(0)) = exp (2 (log(z® — 1) 4+ i(6 — 71'))) (3.56)

and

0—0t

lim h(f) = exp ( log(z% — 1) — z) Va2 —le 2t = —iy/a2 — 1. (3.57)
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If - m<f6<0then 2r<f—-—nm<-mand 0<O+7<7so
1
f(h(#)) = exp (2 (log(z® — 1) +i(0 + 77))) (3.58)

and

lim h(f) = exp < log(z? — 1) > Va2 —1e2’ =iy/x?2 — 1. (3.59)

0—0-—
What we have shown is that h cannot be continuous in (z,0) if this point is in H but not in G, so if
H is continuous G is maximal. As for analyticity, it follows from log’s and exp’s.
3.2.17 Exercise
Is it really an exercise? Well, G ={z € C|IJmz#A0VRez <1}, f: G —C,

F(2) = exp (; log(1 — z)) . (3.60)

3.2.18 Exercise
That doesn’t seem much true. Say
f(z) = exp(alog(x))
9(2) = exp(b(log(z) + 27i))
(by the way, here G needs to be connected) then
f(2)g(z) = exp((a + b)log(z) + b2mi) (3.61)

and the latter deosn’t look a bit like a branch of z*?.
For instance, take a = b = 5

F(2)g(2) = exp (( ;) 2m>> — e = s (3.62)

. . 1.1
and there is no reasonable way to consider —z a s a branch of z272 = 2! = 2.

Maybe we need to add the hypothesis that f(z) and g(z) are the same branch of 2% and z° respec-
tively, that is,

f(z) = exp(alg(x))
g(z) = exp(blg(x))

where lg is any branch of the logarithm on G. Now (even if G is not connected)

f(2)g9(2) = exp((a + b)1g(2)) (3.63)

and so fg is a branch of 2. The same for f/g.
As well, let log : D — C be a branch of logarithm, a € C, b € C and

:D—C
f (3.64)
z — exp(alog z)
:D—C
g (3.65)

z — exp(blog z)

so that f and g are branches of 2% and z° respectively. To get a branch of 2% it would seem fair enough
to consider go fi;-1(p), but that is not the case. To see this, let D = {2z € C| Re(z) > 0V Tm(z) # 0},

log : D — C be the principal branch of logrithm, a = 2, b = % and z = —g + l@ = exp(i%w).

Remark that if z € D then Jm(log(z)) € (—m,w). Clearly zZ € D, so

f(Z) = exp(2log(2)) = exp (ziw) = —i. (3.66)
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Now —i € D, so z € f~1(D), but log(—i) = —iZ and

9(f(2)) = exp (; log(—i)) = exp (—%) =-Zz (3.67)

But ab=1, so go fj;-1(p) cannot be a branch of 290,
The proper restrition for f is to the set

E ={z€ D|alog(z) € Img(log)} (3.68)

that is, z € F <= Jm(alog(z)) € (—m, 7). Let z € E. By the definition of logarithm it follows that
there exists a k € Z such that

log (exp (alog(2))) = alog(z) + i2kn; (3.69)
but Im (log (exp (alog(2)))) — Im (alog(z)) < 27, so

log (exp (alog(2))) = alog(z). (3.70)
Then

9(f(2)) = exp (blog (exp(alog(2)))) = exp(ablog(z)) (3.71)

which means that g o f|g is a branch of 290,

3.3 Analitic functions as mappings. Mobius transformations

3.3.1 Exercise
3.3.2 Exercise
3.3.3 Exercise
3.3.4 Exercise
3.3.5 Exercise
3.3.6 Exercise

(a) 7+
—2i242i -2 _ 242i _ .
(b) —i-2+z‘~?r1+i) =1 = S =141

(c) 72 =252 =1

(d) L=l = =2

3.3.7 Exercise

Observe that T must be a Mobius transformation. It follows that a = ¢ implies b # d, a = 0 implies
b # 0, and ¢ = 0 implies d # 0. Now, allowing that y/w = oo if w = 0 and z # 0, we have

T(z)=1 if z=24
T(z) =0 if z=-2 (3.72)
T(z) = 00 if z=-4
SO
b—d b d
T(Z) = (Z, Cia,_a _C) (373)
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3.3.8 Exercise

We know that
b—d b d
T(Z) = (Zv y T _) . (374)

Since T(Rs) = Roo we have =2 € R, -2 € R, f% €Ry. Thenifc—a#0,a#0,c#0

c—a a

(=d+¢)z— (2-4)¢
T(z) = (3.75)
(b:d+g)z_<d:b_g>4
ife—a=0
T(2) it (3.76)
z) = .
z—f—%
ifa=0
b—d |, d
Jr7
T(z) =2 < 3.77
0=t (377
ife=0
z—|—%

3.3.9 Exercise

If T is a Mdbius transformation, |a|> 4 [b* = |¢|* + |d|* and ab = ¢d then T(I') = T'. Indeed, if |z| = 1
then

az+b laz +b|  |az|® + [b]” + 29Re(azb)
O e -

cz+d|  Jez+dl ez + |d)? + 2Re(czd)
a2 + ] +2%Re(azb) o’ + b + 2Re(azb)
e Iz )+ 2Re(czd) e + |d) + 2Re(czd)
If T(T') =T then T is a M&bius transformationand

() = a—|—b‘ _atbl |a|2—|—|b\2—|—2§ﬁe(a§) _,
ctd| letdl e’ +[d +2Re(cd)
(1) = —a+b‘ _ lma b _ Ja* + b ~ 2Re(ab) _
—etd] |metdl e’ + |d]* - 2Re(cd)
IT(i)] = ?““" _ lia 4] _ [af +[bf +2%Re(iab) _
ic+d lictd] — |ef? + |d? + 2Re(icd)
_ laP +[b* —23m(ab) _
TP+ |d = 20m(cd)
IT(—i)| = ’z:a+b _ \*Zia+b| _ la* + |b|? +29%e(fia§) _
—ic+d —ic+dl e + |d? + 2 Re(—icd)

af® + (b + 2 Im(ab)
le|* + |d|” + 2 Tm(cd)

whence
la|® + [b]> + 2Re(ab) = |c|* + |d|* + 2Re(cd) (3.79)
|a]> + [b]> — 29Re(ab) = |¢|* + |d|* — 2Re(cd) (3.80)
la]* 4 |b]* — 23m(ab) = |¢|* + |d|> — 2Tm(cd) (3.81)
la|® + |b]* + 2Tm(ab) = |¢|* + |d|> + 2 Im(cd) (3.82)

From [3.79[ and |3.80] follows thet la|? +lb\2 = |c\27 |d)*. Then from and follows that De(ab) =
Re(cd), from [3.81| and [3.82f that Jm(ab) = Im(cd).
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3.3.10 Exercise
Let y={z€C| |2/ =1} and

az+b
T(z) = a1 d (3.83)

If T is a Mobius transformation and T(D) = D, then T'(y) = v. Indeed, T(D) C T(D) = D since T
is continuous; T'(D) is closed, since D is compact and therefore such is T'(D), so T(D) 2 T(D) = D.
Then T(D) = D. But D = {z € C| |z] < 1}. The last two imply that T'(y) = 7. As seen in Exercise
this implies that |a|® + [b]* = |¢|* + |d|* and ab = cd. Giving ~ the orientation C' = (1,i,—1), 0
lies in the left of (v, C):

[}

—1i

0,1,i,—1) =2 =14 (3.84)

=
<

1+2

so T'(0) must lie in the left of (v, C) as well, that is Jm(7'(0),1,4, —1) < 0. But

b
T(0) = P (3.85)
and
5
b . ) biq b—d
- Li,—1) =4 =141 (3.86)
(d %+1 b+d
o)
b—d
But

b—d |p]> —db+bd—|d? |b]> —|d" +2Im(bd)i

= 3.88
b+d |b+d\2 \b+d|2 ( )

so [3.87] yields |d| > [b].
If T is a Mébius transformation and |a|® + [b]* = |¢|” + |d|*, ab = cd and |d| > |b], then T(v) = ~
and Jm(7'(0),1,i,—1) < 0, s0 T(D) = D.
3.3.11 Exercise
3.3.12 Exercise
3.3.13 Exercise

3.3.14 Exercise

Let ¢; and ¢y be the centres of the two circles y; and 2. Then a, ¢y, co are aligned and distinct. That
is, ¢1 — a = a(ca — a) where a € R. Moreover, a > 0. We can suppose also a > 1, by swapping names

between c¢; and cg if needed.
If

c1—a=|c, —ale?
co —a=|cy —ale”

1 —ca=|ey —02|ei‘7

then
ler —al e = ey —al e’ (3.89)
and

dea—al _ o) (3.90)
aler — al
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Since the left side is real and positive, so must the right side be too, which implies 7 = 6. Also
ca—ca=c—a—(cz—a)=(a—1)(c2—a) (3.91)
where oo — 1 > 0, so

lcr —co

_ i(o—7)
— = 3.92
(a—1)ca — al ( )
and o = T.
The translation
Ti(z) =2z—a (3.93)

takes a in 0. The rotation
To(z) =e "2 (3.94)

takes T1(c1) and T3 (c2) on the imaginary axis. In fact

e (c1—a)=e"|c; —ale = e |c; —a|e” =|e; —ali

T5(Ti (1))

To(Ti(c2)) = e “(cy —a) = e g — al '™ = e |cy — a| €' = |e; — ali.
Let

d1:|01—a|i

dy = |c1 — ai.
Since for any z,w in C |T5(T1(2)) — To(T1(w))| = |z — w|, Ty o T} takes v, onto
I'n={z€C| |z—di| =|c1 —al}
and 5 onto
Iy ={2z€C| |z—da| =|ca —al}.
The inversion
T3(z) = — (3.95)

1 1
" 2[c1—al " 2lca—al
respectively. So 13 o T o T} sends y; to r; and 72 to r2. Moreover, D is mapped onto the stripe
between 71 and rs.

Let

1 1 1
K=t + )
4 <01a| lca — al

e (L)),
2 \|ea —al e —al

The translation

takes the circles I'y and I's onto the straight lines r; : Jmz = and 7o : Jmz =

Ty(z) = 2+ K (3.96)

takes the stripe

1 1
C|l —-—<7J < - 3.97
{Ze | 2|cg —al ~ me= 2cl—a|} ( )

onto the stripe

L L
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and the dilation
T

T5(z) = 7 (3.99)
takes this last to the stripe
{ze@\ —ggjngg}. (3.100)
Eventually the funcion
e —1
T = 3.101
§(:) = g (3.101)

takes tha last stripe onto the unit disk. Let T'=Tg o0 T5 0Ty 0 T3 015 o T;. The map T takes D onto
the unit circle, and

- o[ E (=t K] 1 G0
z) = .
oL E (=t ) h
or, in the expanded form
|:1( 1 i 1 ><e'iarr:(01102)(za)+‘11(011<ll+I021a)>:|
el 2\Tez—al Jep—al —1
T(z) = . (3.103)
(& %( \0217a\ﬂ; \c1lfa|) <eiiarg(C1162>(z’a)+%( ‘Cllal * |C217a‘ )>:| —+ 1
3.3.15 Exercise
Let
D={zeC| |2l <1}, (3.104)
H={zeC| Rez <0} (3.105)
and
E={zeC|0<|z| <1}. (3.106)
The map
z—1
T(2) — 3.107
(Z) z4+1 ( )
maps D onto H. Then
S(z) = e (3.108)
maps D onto E.
Let’s see some properties of S. Let h < 0. We have
h 1, (1—="h)sinf
T(——+ —¢? ) =h4+i—X—= 3.109
(1h+1h6> e 14 cosf ( )
which means that S maps the circle C} centered in
h
= 3.110
a=T— (3.110)
with radius
1
= — 3.111
minus the point —1 into the circle C7 centered in 0 with radius e. Moreover
in @
lim — +oo (3.112)

0—r— 1+ cosf -

so when the point z approaches —1 on the upper half of the circle C} its image S(z) spans infinitely
many times the circle C? turning counterclockwise around 0. Also if the point z approaches —1 on the
lower half of the circle C} its image S(z) spans infinitely many times the circle C7 turning clockwise
around 0.
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3.3.16 Exercise

The Mo6bius transformation

z—1
T p—
(2) P

tekes G onto C — ({z € C | Im(z) = 0,Re(z) <0} U{1}). Therefore, if log is the principal branch of
the logarithm, the function

9(z) =log(T'(2))
takes G onto {z € C| |Im(z)| < 7} — {0}. Then

he) = exp (G lon((2) )

takes G onto H = {z € C| Re(z) > 0} — {1}. If ,/~ means the principal branch of the square root,
then h can be written as

z—1
h(z) =4/ ——.
(2)=14/7 1

The Mobius transformation

2w — 1
Sw) =50

takes H onto {z € C| |z| <1} — {1}, so S? takes H onto the unit circle. Summing up, the analytic
function

2,/ 1

z+1
&=\ 7=
z-|—1+1

takes G onto the unit circle.

3.3.17 Exercise

Let f(G) C T' where I" is a circle. There is a Mdbius transformation T' such that T(I") = R, then
T o f(G) C Ry, which implies that T o g is constant, and so is f.

3.3.18 Exercise
3.3.19 Exercise
3.3.20 Exercise

Let
a=Ma
B =MXb
v = Ac
6= \d.

Then for z € C
_Aaz+Ab az+b

T(z) = st nd  oord S(z). (3.113)
Let S =T. From
_ ow — 3
T w) = —— 114
() = 2 (3114)

follows from all w € C

Sw—0
ST—l(w) — a*'yw+a + b _ (a5 — bv)w + ba — aﬁ —w
Cf:;”w—fa +d (e —dy)w+da—cB

(3.115)
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whence
(¢ — dy)w? + (do — ¢ff — ad + by)w — ba + aff = 0. (3.116)

This implies

cd—dy=0
da—cB—ad+by=0
—ba+afB =0.
whence
c_¢d
v o4
a_b
a B
Now let
g oc_4d
1= =%
g b
2= o= 3
Then
t10a — t1v0 — taad + t2 8y =0 (3.117)
and
(t1 — t2)(ad = By) =0 (3.118)

which implies, if T' is a Mobius transformation, that ¢; = t5 and so

o= tl_la
B=t'b
v=tite
§=t74d.

If T is not a Mdbius transformation, then it has constant value %, so it must be a = v = 0,
otherwise T' wouldn’t be defined for z = —%. From T = S follows that .S also must have constant value
%, but if S is constant its value is g and a = ¢ =0, so

b _p
Z=-F 3.119
13 (3.119)
and
b d
— =, 3.120
=5 (3.120)
3.3.21 Exercise
Well:
STITS(S7 (1)) = S™HT(21)) = S~ (21)
STITS(S71(22)) = ST (22)) = S ().
3.3.22 Exercise
Let T be defined by
b
T(z) = & (3.121)

cz+d’
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(a) If T has 0 and oo as its only fixed points, then

b

Z =0

d

a

%

c
whence

b=0

c=0
and

T(z) = %z. (3.122)

with a # d, and it is clear that such a transformation has 0 and oo as its only fixed points.
(b) If T has oo as its only fixed point, then ¢ = oo and ¢ = 0. Then

T(z) = az; b (3.123)

Now z is a fixed point of T if and only if

(&-1)=+2=0 (3.124)

so T has no other fixed point if and only if a = d and b # 0, that is:

T(z)=z+ g (3.125)
3.3.23 Exercise
Let T be defined by

az+b
T(z) = et d

If T(0) = oo and T'(c0) = 0 then

(3.126)

= 0

)
b
d
2-0
C

so d =0 and a = 0, and
T(z) = ﬁ (3.127)
ez’ '

If T(z) = az~! it is obvious that T/(0) = co and T(c0) = 0.

3.3.24 Exercise

If T has one fixed point 21, let R be a Mobius transformation such that R(co) = z;. Then R™'TR has
oo as its only fixed point. Indeed, R™'TR(cc) = R™1T(21) = R™!(21) = 00, and from R!TR(2) = z
follows TR(z) = R(2), so R(z) is a fixed point of T, that is R(z) = 21, and z = co. Then R™!TR is a
translation, and so is R~'SR. Since two translations commute

R'TRR™ 'SR =R 'SRR'TR (3.128)
that is
R'TSR=R'STR (3.129)

whence T'S = ST.

If T has two fixed points z1, 22, let R be a Mdbius transformationsuch that R(oo) = z; and R(0) = zs.
Then R~'TR and R~ SR have fixed points co and 0, so they are dilations, and since dilations commute,
it follows as in the former case that S and T' commute too.
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3.3.25 Exercise
Let M be the group of Mdbius transformations. For u,v € C, let
Hyp={T € M |T(u) =u,T(v) =v}. (3.130)
Then
e I''SEH,,=> TS ' €Hyy
o I'SEHyy=>T5S=5T

that is, H,,, is an abelian subgroup of M.

Every H,,» is maximal, that is, if G is a subgroup of M and H, , C G then G is not abelian.

Indeed, suppose u # v and let R € G and R ¢ H,,,. If R(u) = u but R(v) # v then R does not
commute with any T' € H,,,: TR(v) = RT(v) = R(v) implies that R(v) is a fixed point of T, that is
either R(v) = v or R(v) = u, both cases impossible. The same if R(v) = v but R(u) # u. If R(u) # u
and R(v) # v then RT = TR implies RT(u) = TR(u) = R(u), that is R(u) is a fixed point of T,
so R(u) = v, and for the same reason R(v) = w. But R must have two fixed points, since if z is a
fixed point of R then z # u and z # v but RT(z) = TR(z) = T(z), so T(z) is a fixed point of R and
T(z) # z because z is not a fixed point of T. Let w be the second fixed point of R. For the same
reason as before, T'(z) = w and T'(w) = z. But in H,,, there is only one element which swaps points
in C (see Proposition 7 so R cannot commute with all the elements of H,, ,,.

Now suppose u =v and let R € G and R ¢ Hy,o = Hyu, I € Hy. If R has one fixed point z then
z # w and RT = TR implies RT(u) = TR(u) = R(u), so R(u) = u against the hypothesis. If R has
two fixed points, z and w, suppose z = v and w # u. Then TR = RT implies RT(w) = TR(w) = T(w)
and T'(w) is a fixed point of R. But T'(w) = w implies w = u, T(w) = z implies T'(w) = u and again
w = u, against the hypothesis. The same if z # v and w = u. If z # u and w # u, then TR = RT
implies RT (u) = TR(u) = R(u), that is R(u) = u, and u = z or u = w, against the hypothesis.

Now, let A be an abelian subgroup of M.

If A contains only elements with the same fixed points or point, then A C H,, , for some u,v € C,
either v # u or u = v.

If A contains at least two elements 1" and S with different fixed points z1, z2, and w1, wo, we have
seen that z1 # 29, w1 # wy and {21, 22} N {wy,we} = O. Furthermore, T'(w;1) = wy and S(z1) = 22,
that is, T2 = S? = I. Now in A there must be U = ST too, and U # S, U # T, since, for instance,
ST = S implies T' = I, but in A there cannot be any other element of M. Indeed, if R is any M6bius
transformation that commutes with S and 7', then R?> = I and each one of S,T, R must swap the
others’ fixed points, so STR has 6 fixed points, that is STR =1 and R= ST =U.

Summing up: if A is an abelian subgroup of M then either A C H,, ,, or for some elements u,v € C
with uw = v or u # v, or A = {I,S,T,U} where S, T,U are elements of M such that S =T? =U? = 1.

3.3.26 Exercise
(a) We have, for z € C
"oy "oy A N Wy d!
@ ((le d/) (Ccl// d")) (Z) =0 <<S/Z// + d/i// Z/b// + d/d//>> (Z) = (3'131)
(a’a”+b’c”)z+a’b”+b’d”

- (da" +dc")z+ Y+ d'd” (3.132)

a v a' oy a,% Ty
¢ ((C’ d/)> oo <<C// d//)) (2) = % (3.133)
(d'a’ + )z +ab +Vd"
B (ca" +d' ")z + Y +dd" (3.134)

and

If for all 2z € C

¢ ((i Z)) (2) = 2 (3.135)

then for all z € C

24+ (d—a)z—b=0 (3.136)
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whence
c=0
b=10 (3.137)
a=d
and
a 0
Ker¢:{(0 a) |a6(C}. (3.138)

It is obvious that Img ¢ = M.

(b) We only need show that for any A € GLy(C) there is A’ € SLy(C) such that ¢p(A") = ¢(A). Let
A € C such that A? = det 4, and

1
r_
A= AA. (3.139)

Clearly ¢(A’) = ¢(A) and det A’ = {5 det A = 1. Finally

Ker ¢ N SLy(C) = { (é (1)) , <_01 _01) } : (3.140)

3.3.27 Exercise

The group M of all Mébius transformation is simple because SL2(C) has no normal subgroups other

than
{<(1) (1)) ’ <_01 01)} (3.141)

which is the kernel of a surjective omomorphism from SLs(C) to M.

3.3.28 Exercise
3.3.29 Exercise

(a) Since

L1y 20
u%(;(z) Tz + y

we have

e 0 U= (2) = (07 = 9B)z + ad +
oo — (B + 6a)z — B +ya

SO Uq,3 ou?}; el.

(b) Since A € SU, <= A = A~ Adet A= 1, if A, B € SU; we have

—t—1_¢

(AB1) =B 1A' =B 4A'=BA'=(4B ")
and
det(AB) =det Adet B =1

so AB € SU,. If

(8
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so A € SU; implies
laf® + b]* =1
le)* +1d]* =1
ac+bd =0
ad —bc=1

From the last two

d
a=—Tb (P +1P) = =
and b = —¢. Again from the last but one
b(d —a) = 0.

Ifb#0thena=d Ifb=0thenalsoc=0, |af° =[d*=1andad =1,s0a=d=1or
a=d=-1

(c) This is false, since

(a 6)(7 5)_(047—ﬁ5 oz(5—|—ﬁ’y>
-8 a)\-0 7) \-B8-as éf+ay

while

(ay —0B)z —ad — By
(By + 0@)z — 86 +ay

U3 0 Uy,5(2) =

On the other hand the homomorphism ¢ : GL2(C) — M obviously takes SU;(C) onto U. From
I € SU(C) and —I € SU,(C) follows that ker ¢|sy,(c) = {1, —1}.

(c) This way T is not well defined. Take v(z) =zand f(z) =2z Thenv=wu;; andv=u_; 1. In
the first case

in the second one

TO(f)(2) = (1) f(v(2)) = —=.

The proper way is to take I € N. Since ker ¢ su,(c) = {I, =1}, if V = un 5 = u,,5 then

GG -

and a =+, =0, or

66

and a = —v, § = —4. Since
(Bz +@)* f(v(2)) = (=(Bz +@)* f(v(2))

T&l) is well defined.
Then, if v € U, say v = uq,3, so, for f,g € H; and a,b € C:

T (af +bg)(2) = (B2 +@)* (af (v(2)) + by (v(2))) =
= a(Bz +@)* f(v(2)) + b(Bz +@)*g(v(2)) =
= aT{" (f)(2) + 0T" (g)(2) =
= (aTV () + T (9))(2)
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SO Tigl) is a linear transformation. It is easy to check that for any v € U Tél) o qul,)l =idg,. Let
A(H;) the group of automorphisms of H;. The map

’L/J U — .A(Hl)
ul—»qul)

is not a homomorphisms, at least if the composition in A(H;) is defined in the usual way. In
fact, if v,w € U and v = uq,8, W = Uy 5

TH (f)(z) = ((By +@d)z — 85 +a7)? f(uv(2))
and

(T o T (f)(2) = TIUTO())(2) = (Bz + @)* (TP () (ulz)) =
= (Bz + @)* (6u(z) +7)* f(v(u(z
= ((a6 + B9z — 63+ a9)* f(v(u

But if we define the composition in A(H;) as T o S(f) = S(T(f)), then

(T o T () (2) = T (TP (N)(2) = (62 + )P (TP ()(0(2) =
= (62 +7)*(B(2) + @)* f(u(v(2)))
= ((By +ad)z — 45 +ay)* f(uv(2)).

To show that 1 is injective, suppose 1 (v) is the identity of A(H;),that is, for any f € H;:
T,(f) =1
If f(2) =1, and v = uq g then

TH(F)(z) = (B2 +@)? f(0(2)) = (B2 + @) = 1.

—
=
=

|

Since 2] is an even non-negative integer
Bz+a==+1

whence § = 0 and o = £1. That is, v is the identity of U.

3.3.30 Exercise
We have

If(z)] = HRe(—glog(224T)) _ o3 Im(log(224T)) — b are(22EY)

The Mo6bius transformation
1241
—z+1

T(z) =

takes D onto the upper half plane, as

(1) =
T@#)=-1

T(-1)=0.
This yields

1241
0 < arg 1 <7

whence

)_n

1< |f(z)] <e?.
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If S is a Mobius transformation that maps D onto D and such that f(S(z)) = f(z), then there is an
integer k such that for every z € D

i iS(z) +1 ) iz +1 .
—21 7 ) =1 2kmi.
2 Og<—5(2)+1) 2 Og(—z+1) 2k

Since both the arguments of the logarithms belong to the upper half plane

Elog S(z)+1 —z+1 — ohr
2 —S(z)+1 z+1

for some integer h, or

S(z)+1 _Z+1*e4h“
—S(z)+1 z+1

which yields

(e4k7r + 1)2 + e4k7r -1
(e**m — 1)z + ethm 417

S(z) =

All these Mobius transformations take D onto D.



Chapter 4

Complex Integration

4.1 Riemann-Stieltjes integrals

4.1.1 Exercise

If P={to, - ,tn} is a partition of [a, b], we have, since 7 is non decreasing

M=

Y(tk) = y(te-1) =

a).

P) = Z [y(tk) = y(tr-1)| =
k=1

=(tn) = v(to) = v(b) =

b
Il
_

—~

4.1.2 Exercise
(a) Say #Q = #P + 1. Then if
P ={to,...,tn}
we will have, for some j such that 0 < j<n—1

= {t07...,tj,S,tj+1,...tn};

then
J
=3 y(te) = v(tr-0)| + 1v(s) — ()| +
k=1
+ y(tje1) —(s) + Z Iy(tk) = y(tr-1)|
k=j+2
and

n

v(1P) =Y Iv(tk) = Y(tk-1)] <

k=1

<37 Rt 2l + ) )]+
k=1

n

Z Y(te—1)| <

k:_

MQ,

<Y (te) = y(te—1)| + |v(s) — ()| +
k=1
+ [v(tj+1) s)| + Z [y(tk) — v(tk—1)| = v(7; Q).
k=j+2

If #O = #P + h, then Q =P U {sy,...,s,}.
Let
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e Q1 =PU{s1}
.Qi:Qi_lu{Si} ’i:2,...,h,

and for what already proved
v(%P) So(y; Q1) Sv(v;Q2) <+ S w(v;Qn) = v(7; Q).
(b) For a partition P = {to,...,t,} we have

v(ay +Bo;P) = ) [(ay + Bo)(t) — (v + Bo)(tr-1)| =

|y (tr) + Bo(tr) — ary(te-1) = Bo(tr-1)] <

IA

M- I 1M I~

b
I

1
alv(v;P) +[Blv(o; P) < |a| VI(y) + 6] V(o)

whence V(ay + fo) < |a| V(v) + |6] V(o).

4.1.3 Exercise
4.1.4 Exercise

4.1.5 Exercise

We have, for t € (0, 1],

"(t) et cos ! + sin ! +1i ( sin ! cos !
- - - in— — cos —
7 Iz t ¢ ¢ ¢

and

(& t
2

e

0= V2
Then for 0 < h < 1, the path

Y i [hy1] = C
t— (1)

is smooth, and
e
Vo = [ V2
h
Hence by [0.1.2] v is rectifiable, and

1
et 1 1 ﬂ
t2 dt:\/i(e — € "):?.

1
t 1

dt =v2(e ! —e 7).

12

1
V(V) - hli>HOl+ h \/5

4.1.6 Exercise

4.1.7 Exercise
Since

lim~(t) =0=

t—0

7(0)

(v (tr) = y(te—1))| + 180 (tr) — o (te-1))| =

ol [y (k) = v(tk-1)] + [l o (tr) — o (te—1))| =

(4.3)

(4.6)

(4.7)

(4.8)
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v is a path.
Now, let
2
= keN
T Oy an S
9 (4.9)
ty = keN
P (34 4k)T
and
Py = [0,t%, th, th 1, t_1s- -0 0, L0, 1] - (4.10)
Then
N
v(v, Pr) = [y (%) = 1(0)] + D () — ()] +
k=0

M=

+ ) =) + Q) = ()] =

1

k=

a 2 2
Zkz_o7((1+4k)ﬁ)_7((3+4k)ﬂ)‘:
& 2 . 2l
_kzzo Grar ) et =

al 4 o 8(1+2k

>y ( )

1+ 46)(3 +4k)r (1 +4k)(3 + 4k)m

b
I
<]

8(1 + 2k)
(1 + 4k) (3 + 4k)

M=

o>~
Il
(=)

and the last series diverges.

4.1.8 Exercise

4.1.9 Exercise

We have

1 i
/ —dz = / melntdt = 2min.
~ z 0 €

4.1.10 Exercise

We have
27 ) ) 27 )
/z” dz = z/ eedt = z/ et gy,
el 0 0
Ifn# -1
pi(nt+1)t 727
/z” dzz[} =0.
v (n+1)t],
Ifn=-1

/z" dz =i [t])" = 2mi.
v
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4.1.11 Exercise

Let
y(t)=2it+1—1
Yo(t) = =2t + 144
v3(t) = —2it — 1+
Y(t)=2t—1—1
Then
4
1 1
/fdz:z:/ —dz.
y Z 177 ¢
]_1 J

If log is any branch of the logarithm defined on an open subset of C containing the path on which each
integral is to be calculated, we have

1 g
/*dz:/ ;dt:[log(2it+1*i)](l):gi
0

" 2 2it+1—i
/w o= / it = loe(=2+ 1)l = i
/% %dz - /01 ﬁ dt = [log(—2it — 1 414)]}; = gZ
[ e [ ot gy = 5

SO

4.1.12 Exercise
We have

. A4

m e’LT‘P ] L .
I(’I“) = / : ’L'Teltdt _ Z/ el’r‘(COS t+i sin t)dt _
o ret 0

s
— Z/ e—rsmtezrcostdt;
0

then
g : . & . .
‘I(T)‘ S/ ’efrsmtezrcost|dt:/ |€7Tsmt’ |€zrcost|dt:
O7T ) 0
:/ e—rsintdt — 7T(8_ sint)r
0

for some £ € (0, 7), whence e~ %% < 1, and

lim |I(r)| = 0. (4.11)

r—+00

4.1.13 Exercise

What is 22 supposed to mean? There is no way to define a branch of the logarithm on an open subset
of C in which both paths are contained. Let

D, {z eC|m(:) e (-2, 32”)}

Dy {z €C| Im(z) e (2,52”)}.
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(a) If log’ = eXprDl1 and 273 = exp (—3log'(2))
v 0 0

(b) Iflog” = exp‘fDl2 and 277 = exp (—% log"(z))

/Q—ahzi/‘aémhz—zF—?ﬂ =2[i+1].
v 0 0

But let
Dj {z €C| Im(z) € (%7M)}
272
Dy {z € C| Im(z) € (527T7927T)}

1

(a) Iflog’ = expl_D3 and 272 = exp (—5 log'(z))

(b) If log” = exp‘_Dl4 and 272 = exp (—% log"(z))

¥ 0 ’

4.1.14 Exercise
4.1.15 Exercise
4.1.16 Exercise
4.1.17 Exercise
4.1.18 Exercise

4.1.19 Exercise
We have

1 1 1 1
,yz—l 2 ,yz—l ’YZ+1

The second integral yelds 0 because for ¢ € [0, 27] the point v(t) + 1 = e + 2 lies in the domain of a
branch of the logarithm. Then

1 . 27 it
J R -
L 21 2 ), T+et—1

4.1.20 Exercise
We have

1 1 1 1
/ 5 dz:[/ dz—/ dz}.
,yz—l 2 ,yz—l ’YZ+1
1 T 9t 0 9jett T 9jelt
dz = S dt= : dt : dt
Lz—l N [mmﬁ—l tﬁﬂ%w—l +A 27t — 1

Now
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1 T 9jeit 0 %jett T 9eflt
/ dz:/ Ldt:/ de/ =t
v z2+1 _x2ett+1 _p2ett+1 o 2et+1
Letting

Dy {z €C| Im(z) e (—37”7 g)}

Dy {z eC|m:) e (-2, 32”)}

and log’ = exp‘_Dll, log” = expl_Dl2, we have

O 2ie’ o 0 /
/ 20t 1 dt = [log'(2¢" —1)]__ = —log'(—3) = —log3 + mi
o 62 —_ —T

21 - '
/ Qezie [log (2e 1)]0 =log"(-3) = log 3 + 7i
0

0
/ it 0 _ / / o .
/ 2€Zt n 1 [log (2e" + 1)] _, = log (3) —log'(—1) =log 3 + mi

2iett it . . , -
/0 Dot 11 1 = [log"(2¢"* + 1)]O =log"(—1) — log"(3) = mi — log 3.
Finally
/ 22 _ [27” + 2mi] = 2mi.
.

4.1.21 Exercise

Simply (Fy — F»)’ = 0 implies F} — F5 constant in G. We know that F’ = 0 implies that F is constant
also when F' is only differentiable.

4.1.22 Exercise

For n > 2 let
falz) =(z—a)™"
Then
1
fn: 1—n

so each f, has a primitive in G.
4.1.23 Exercise
We have

(f9) = flg+ fd

whence

L (fg)dz = L Fgdz + L fo'de

and

f(0)g(b) — fla)g(a) = /f’gdz + / fq'dz.
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4.2 Power series representation of analytic functions

4.2.1 Exercise
4.2.2 Exercise
4.2.3 Exercise
4.2.4 Exercise

4.2.5 Exercise

Actually Abel’s Limit Theorem has a more general statement: see Ahlfors ” Complex Analysis” 2.2.5
p- 42. To prove the given statement, let

and for |z] <1

+oo
flz) = Z apz”.
k=0

Then clearly

lim S,=A4

n—-+4oo

and

n n n

D ara® =80+ (Sk— Sk-1)at = S0+ > Spat =D Sp1ab =
k=0 k=1

k=1 k=1
n—1 n—1 n—1
=3 St =) St 4 St = (1—2) Y Skt + Spa”
k=0 k=0 k=0

whence, for |z| <1

+oo
flz)y=>1-2) Z Spa*.
k=0
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Now for any ¢ > 0 there is m € N such that n > m implies |S,, — A| < e. Then, for |z| <1

“+o0o
[f(z) = Al=|(1—2)) Spa* — A
k=0

—+oo —+oo
=11 —x)ZSkxk — A1 —x)ka =
k=0 k=0
+oo
=|(1—2)> (Sk— A)t| =
k=0
m—1 —+o00
=|(1-2) < (Sk— Ak + (S - A)xk> <
k=0 k=m
m—1 +oo
gl—x|< (Sp — A)z*| + Z(Sk—A)xk>:
k=0 k=m
m—1 “+o00
=1 -z ( (Sp — A)z®| + |z|™ Z(Ska)xk*m > =
k=0 k=m
m—1 +o00
=1— 2 ( (Sp — A | + |z™ z:(S;g — A)2” ) <
k=0 k=0
m—1 1
< |1 -z ( (Sp — A)z®| + |z|™ e) <
P 1—-2z
m—1
<1 -2z (S — A)z| + €
k=0

whence for any € > 0

lim |f(x) — Al <e

r—0~

that is

lim |f(z) — A] =0.

r—0~

4.2.6 Exercise

4.2.7 Exercise
(a) Using integration by parts

et 1 [ ie*” 21 . )
=) dz = 2/V pomy dz = - [ze”]zzo = Ti.

v

(b)

zZ—a

1
/ dz =2mi[l],_, = 2mi.
.

(c) Using integration by parts twice
i 1 1 i 1
il PR L PR ety PR Y [sinz],_, =0.
y 23 2/, 22 6/, z 6 7=

(d) Supposing log is the principal branch of the logartithm, since the integrand function is analytic in
B (1:3)

1
/ Oizdzzo.
y 2
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4.2.8 Exercise
4.2.9 Exercise

(a) Using integration by parts n — 1 times

% h
/bm Zdz if n is odd
2 ¥

2sinh z Z
zn dz = n! cosh z
K / dz if nis even
Y 2
that is
9¢inh = 5 [sinhz],_, =0 if n is odd
dz = —'2m A7
N AT n: [cosh 2], = — if n is even
n!

(b) If n > 1 the integrand function has a primitive in C — {%}, so the integral yields 0. If n =1

1 . .
/Y @ dz = 271 [1]22% = 2mi.

(c)

(d)

/ SE 0y = omi [sinz],_, = 0.
y 2

(e) Supposing

S ohos

where log is the principal branch of the logarithm, then, using imtegration by parts n — 1 times

1—(m—1)m

/(zz# dz:<1—m><1—2m>---<1—<m—2>m>/ZZTdz:

—1m m™~m) -1
_ (1 — m)(l — 2m) e (1 — (m - 2)m) - [21—(71:;1)171}
mm—lm! a—1
_ (1-m)(1—=2m)---(1—(m-— 2)m)2m,
m™1m! ’

4.2.10 Exercise
We have

241 1 1 1 1
JE=I S P Y N
5 2(22 +4) 4/, z 8 /)y z—2i 8/, z+2i

then

/ 241 gz if r <2
z

dz = .
(22 +4) omi  ifr > 2
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4.2.11 Exercise

If T is the Mobius transformation

1z4+1
T =
(2) —iz+1
we have
T710) =1
T H~1) =
T (o0) = —i

so T maps the imaginary axis onto the real one, and the set {z € C | Re(z) = 0 A |Im(z)| > 1} onto
the set {z € C| Jm(z) = 0 A Re(z) < 0}. So the domain of analyticity of f is

D=C—{zeC| Re(z) = 0A [Im(z)| > 1}.

Furhtermore
t ( ) 1 eiz — e_iz 1 €2iz — 1
ang) = - ——————~ = = o
i eiz 4 e—iz 7 e2zz+1
SO
1 25 -1 114iz—1+4iz
tan(f(z)) = B ;Tl +1 = {1+z‘z+1—iz -
—iz+1
If |z| <4
+00 k+1
-1
log(1 +iz) = %ik'zk
k=1
+o00 k+1
1
log(1—iz) = ( ]3 (=)=
k=1

Now PRe(1 +iz) > 0 and Re(1 —iz) > 0, whence —7 < IJm(log(1 + iz) — log(1l —iz)) < m which means
that log(1 +4z) — log(1 — iz) lies in the image of log, and

141z
log(1 +1iz) —log(l —iz) =1 =
og(l+iz) —log(l —iz) =log (1 — zz>
too k41
—1
— Z ( ) (1 - (71)k)ikzk _
k
k=1
+oo
_ 2 j2h+1 2k
P 2k+1
+oo
2
— (—1)ki22k+1.
P 2k+1

Finally

= (DR
1= e
k=0

4.2.12 Exercise

-1

Since sec(z) = cos(z)™ 1, sec is an even function and its power series expantion has only even powers.

Let
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Now cos(z)sec(z) =1 yields Fp =1 and for n > 1

zn: )k E2(n k)
I 2(n—k))!

k=

o

whence

Since the domain of sec is
d(0,D)=Z%

4.2.13 Exercise

To be more accurate, define

e*—1

9(z) =

=0

- 2n)!
> et e O

S0 (5" ) B =0

D =C- {% + 2km, k € Z} the radius of convergence of the series is

if2z#£0

1 ifz=0

Then

+oo k

9(z) = ]CE:;J m

Since g is defined everywhere, the radius of convergence of the last series is +o0o. Alternatively

lim ¢
k—-+4oco

1
(/€+1)!‘:

In the same way define

z
if z#£0
fe) =4 @1 .
1 ifz=0
Then ¢(z)f(z) =1 for each z € C. Let
+oo ak
_ Sk
fe) =%
k=0

Since f is defined in D =
9(2)f(z) =1

En: ]
P k! (n k;—l—l)
or

‘ kk(nfk'Jrl

C — {2kmi, k € Z}, the last series has radius of convergence 27. Since

(')
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and this is an even function, so

X 1 1 =a
h(z) = ];zk+2z=l+(a1+2)z+zkzk
k=0 "

which yields

1
ay = ——

2
ask41 =0, k>0

4.2.14 Exercise

If
le*+1
Mz) = 2 e* i— 1°
we have
cot(z) = 162w7+1 1 (1M2iz> = 1h(2iz)
ez — 1 z\2e% -1 z
and

tan(z) = cot(z) — 2cot(22) = %h(Ziz) - %h(éliz) =

1 +§ ask (2. >2k_+§ ask (4. >2k _
2 2k R )T

z

|
| =
N N N/~

— (2(k+1)!

4.3 Zeroes of an Analythic function

4.3.1 Exercise
Let

+oo
f(z) = Z apz”.
k=0

Since

n—1 —+o0o
z
f(”) _ E akzkfn + E akzkfn
z k=0 k=n

then if |z| > R

+oo . f(Z) n—1 1 n—1 1
> ot < [T 3 fond g <004 30 ol
k=n k=0 k=0
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This implies that

+oo

§ : k
Ap+ k2

k=0

is a constant, that is, a4+, = 0 if £ > 0, and
n
flz)= Z apz®.
k=0

4.3.2 Exercise
Let
Gi={z€C]| |z+2| <1}

Go={z€C]| |z—-2|< 1}
G =G1 UGy and f: G — C defined by

f(2) = 0 ifzeGy
TV ifzeGy

4.3.3 Exercise
Let f, g be entire functions such that f(z) = e” and g(z) = e if € R. Then the set
{zeC|f(z) =9(2)}

has a limit point in C so f = g.

4.3.4 Exercise
4.3.5 Exercise
4.3.6 Exercise
4.3.7 Exercise
4.3.8 Exercise
4.3.9 Exercise
4.3.10 Exercise

The function

i
g

is analytic where g # 0 , and so is f, which is impossible.

4.4 The index of a closed curve

4.4.1 Exercise

4.4.2 Exercise
For each k € NT define the map
1 1
ap : {k—i—l’ k] — [, 7]
t— m[2k(k + 1)t — 2k — 1]
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and the path with the same domain

1 .
) = 5 (40 +1).

Clearly

so the path v! : [0,1] — C defined by
1 1
1 . 41
75 (1) 1ft€(k+1’k] keN

0 ift =

Y'(t) =

is continuous, and
“+oo
> Vi)
k=0

converges. By Proposition ~! is a rectifiable path.
In the same way for each k¥ € N* define the map

2. _1 _L N
ag { R [0, 27]
t — —7[2k(k + 1)t + 2k]

and the path with the same domain

1/ e
() = 5 (40 -1)

so the path 42 : [—1,0] — C defined by

1 1
2 if - =
i (t) 1te[ R k+1> keN

0 ift=0
is continuous and rectifiable. Let v : [-1,1] — C defined by

A if t € 0,1]
) = {72(75) if t € [~1,0].

Again by Proposition [9.1.3

L 1 1 d_+oo 1 . +oo 1 ;
n(%Ph)mevp}ll_z z=) e Z+ s s z

k=1 "k k=177
that is
400 +o0
n(viph) = Y n(viiph) + > n(vFiph).
k=1 k=1

Since clearly p; belongs to the unboundeded component of C — {7} for all k, to the unbounded
component of C — {7}} if £ > h and to the only one bound component of C — {7} } if k& < h, then
n(v;py) = k. Similarly n(vy;p?) = —k.
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4.4.3 Exercise
Let

p'(z) =a (z—zn)
k=1 hk
S0)
P(z) _ En: 1
p(2) =z
and

4.4.4 Exercise

Let
o1:[0,1] = C
= (14 (r = 1)t)e
and
o9 : [0,1] = C
t — eite

Then there is an integer k such that

1 1 1
/fdz—i—/ fdz—i—/ —dz = 2kmi
N 2 oy Z g Z

whence

1
/fdz
y 2

1
_1
/ridt—&-z/ Odt + 2kmi =
o 1+ (r—1)t

=[log(1+ (r — 1)t )] [29] + 2kmi = logr + 0 + 2kmi.

4.5 Cauchy’s Theorem and Integral Formula

4.5.1 Exercise

In every point (v, wle G x G such that v # w the function ¢ is clearly continuous.
Let r be such that B(w,r) C G. If u,v € B(w,r/4) then v € B(v,r/2) and B(v,r/2) C B(w,r). So f
is analytic in B(v,r/2) and

0 (k) , £ 1K)
Fl) 1) = =) S TP 0t = ) @)+ )Y T g
k=1 ’ k=2 ’

whence if u # v and (u,v) # (w, w)

u) — v / , “+o00 (k)v I
w—f(m‘: f(U)+(u—U)Zf k'( )(u_v)k,Q_f(w)
k=2
oo

’

)= f @)+ =

<

k=2
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Now if |f(2)] < M in B(w,r) also |f(z)| < M holds in B(v,r/2) for any v in B(w,r/4), then by
Cauchy’s Estimate

09 (U)’ < EIM2Fk

for any v in B(w,r/4). It follows that

+o0 5k k—2 +o00 k
25 ju — v AM 2|u — v
k=2

r2 r
k=0

rk

0 (k) (y
Z f ( ) (U _ U)k—Q

and, since |u — v| < r/2

+oo
f(kk)'(v) (U _ U)k—Q < 4M(T _f |’LL — UD )
k=2
Eventually
F)—10) o g AM(r—2Ju o)
IO | <[ - £ ] o P2,

Soif e > 0 there is §; such that for any (u, v) such that u # v, (u,v) # (w,w) and \/(u — w)2 + (v — w)% <
1 the inequality |p(u,v) — p(w,w)| < € holds.

Since f is a continuous function there is d; such that for any (u,u) such that (u,u) # (w,w) and
Vu—w)?2+ (u—w)2 = V2u—w| < & the inequality |p(u,u) — p(w,w)| =
holds.

If § = min {61,682} then (u,v) # (w,w) and \/(u — w)2 + (v — w)2 < § implies |p(u,v) — p(w, w)| < €.

/

flw)=f)| <e

For z € G let

pu(2) = p(2,0).

Clearly ¢, is analytic for any u € G such that u # v. Let r be such that B(v,r) C G. For z # v and
|z —v| <r

Z) — pylZ z)— f(v ’ = *) (v _1 ’
m;fuzzlv(ﬂz5()_f(v))zzlv@fk!()(z_v)k _f@)):
1 (E W) ) NS () >
z—w (k_Q k! (Z_U)k >_kZ_2 k! (Z_U)k
whence
o 22 = 0u(2) _ £1(0)
z—v Z—v 2
If 2 £ v
R AC G () - UJ;Z) —f(v) _
@)~ F @) ) = L 0 - S S0 g
(z—v)?
lzf/v ”v = (k)v
W ACES SONYAUNS ¥ O I
k=3 )
im o, (2) = L0 = )

NB Remember we still don’t know that a derivable function is analytic.

4.5.2 Exercise
4.5.3 Exercise
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Singularities

5.1 Classification of singularities

5.2 Residuesr,

5.2.1 Exercise

(a)

(h,0)

. o -2 - .
The polynomial 2z + 22 4 1 has roots r; = €'5,7y = €'3 ,r3 = €' 5 ,ry = €' 5 . The residues of

the function

52
16 =g
are
V3 —i
I'eS(f7’]’1) - 4\/3
—V3—i
res(f,r2) = NEER
Let h > 1 and
Yr ¢ [0,71] = C
t — helt
op: [—h,h] = C
t—t
Then
(2) dz = 2mi (ves(f, 1) + res(f,rm2)) = FT\/E

Yht+oh

For the integral on ~; we have

2’2 J ™ h363it J ™ hS J
—daz ) - - t| < - - t.
/Yh Z4 + 22 +1 A h4e4zt + h2€21t +1 ‘ — /0 |h4e4zt + h262zt + 1|

Now

|hte™ + h?e* + 1] = [R?e* (B%e* + 1) + 1] > |h® |h*e® + 1| — 1|
in turn, since h > 1

|h?e® +1] > n* -1
and if h > /2

h? |p?e* +1| > 1
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74

SO
|h? |h2e® + 1| — 1] = h? [R?e*" +1] =1 > h*(h* — 1) — 1.

Going back to the integral we have
T h3 h37

= 2(72 dt = 57
o h?(h?2—-1)-1 h?2(h?2—-1)—1

2
z
———dz
[,

that is

52
lim / -5 dz = 0.
h—too |, 2%+ 2% + 1

This yields
22 /3

1i —_——dz =
o A4 2241 i 3

h—+4o00 on

But
2 h 2 h 2
z t t

[,hz4+22+1 ? /_ht4+t2+1 /0 241

which finally yields
/ P oY
o th+t2+1 6

(b) To calculate this integral we don’t need the residues. Provided we already know that

T ging 7
0 xr 2

In fact, for 0 < a < b

b .
bcosz —1 cosx — 1 b sing
——dr=|———| - dx
u x x N W T
SO
Tcosx — 1 cosz — 17" Tsinx 2 Tsinx
5 dr = |~ — - dr = — — dz,
0 X X 0 0 xr T 0 xr
T cosz — 1 cosz — 117 T sinx 2 T ging
——dr=|——— — de = —— — dz,
- x x . - x s - x
and
T cosz — 1 T sinz T
— 5 —dr=— de = ——.
0 T 0 T 2

(c) If a =0 then

/%dez/ cos20d = 0
o 1—2acosf+ a? 0

so suppose a # 0.
If z=¢€" then 27! = e %, s0

1 1
Q== —
Ccos 2<Z+z>

and
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Hence, if |2| =1

cos 26 1 241
1—2acosf+a2  2z(az?2—(1+a2)z+a)

so if
~v:[0,1] = C

tl—>€2t

we have

" cos 26 1 241
- df=-—— dz.
o 1—2acosf+ a? 4i ), 2%(az? — (1 +a?)z +a)

The integrand function f has simple poles in a and 1/a and a double pole in 0. If a® < 1 only 0
and a lie in the interior of v, and

1+ a?
res(,0) =+
1+ a*
reS(f, a) = m
Eventually

g cos 260 T ra?
- _df=—= = .
/0 1 —2acosf + a2 2 (res(f,0) + res(f, a)) 1 — a2

(d) If |z2| = 1 we have

1 _ 422
(a+cosf)?  (2az+ 22+ 1)
so if
~v:[0,7] = C
we have

/” I 1/ 1z
o (a+cosh)? 20/ (2az+22+1)

The integrand function f has double poles in —a 4 v/a? — 1, but only —a + v/a? — 1 lies in the
interior of 7, and

res(f, —a + \/aQ—l):L3
a?—1

SO

/7r 1 _ ma
ola+cos)? 1%

5.2.2 Exercise

(a) Let
Yn i [0,71] = C
t s he'
and
Op : [=h,h] = C

t—t
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The function

1

f(Z):m

has double poles in +ia, and

res(f,ia) =

4ia3’

Then if h > a

h ™ it
1 he 1 ﬂ'
2 ———dt+1i - —dt = ———dz = —.
/; (t2 + a2)2 + 7//(; (h2€21t + a2)2 [Yh+5h (22 + a2)2 z 2a3

But
hett | h § h . h
(h2e2it +a2)2| ~ |p2e2it 4 22 = [|n2e2it| — a2> (B2 — a?)?
S0
™ heit
hoso o (h2e2t 1 a2)2
and
h
1 s
I L _a=
Jim [ =

(b) Let A > 1. Then

h h 3
(1 (1 1
/ ong / ogac2 +/ (ogx)2 dr —

iy 1+ 1/h 1+:v 1 1+z

log 1 " (log z)?

——)d do =
/L ( x2> H/l T+a2 @
/ loga: +/h (log z)3 d —
1—|—x2 1 1+22

(1 h 3
/ ogz)® / (log x) dr — 0.
1 + 3:2 1 1 + 1‘2

This imply

o (log z)?
dr =0
/0 1+a22 “

+oo 1 3
/ (logz)”
1 1+ a2

converges, because there is K such that for z > K

since

(log z)*
x

whence for x > K

(log z)? 1
1+22 ~ 1+a22
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(h,0)
(c)
We have
/h cos(at) 4 — /h etat +efiat 4 — /h etat "
o (1+12)? o 2(1+¢%)? —n 2(142%)?
For h > 0 let
Yh: [7h7h} —C
t—1
and
op : [0,71] = C
t — he't’
If h > 1 the function
eiaz
s
has a double pole in i inside the closed curve 7, + 65, and
o 1
res(f,i) = _w.
4
Furthermore
™ eihae“ i
dz = ————— jhe' dt
[, 1695 = || e e
and, if h > 1
eihae“ ,L'he'it _ e—hasint < h
2(1 + h2ei2t)2 2|1+ h2ei2t” T 2|h2 — 1
SO
li dz=10
Jdm [ e
and
0 cos(at) ) L me %a+1)
/O m dt = 2wt reS(f, Z) = f
(d) If z = e
1 _ 422
a+sin’0 24 —22a+1)+1
so if
~v:[0,7] = C
we have

s

z 1 1 [ 1
o a-+sin®f 4 )y a-+sin“0

1
43

/

4z

24 —=2(2a+1)+1

dz.

Since a > 0 the integrand function f has double poles in the real points :t\/2a +1+2y/ala+1);

now 2a 4+ 1 —24/a(a+1) € (0,1) while 2a + 1+ 2 /a(a+ 1) > 1, so

4z
/ 1 dz =
420 =2Q2a+1)+1

= 2mi (res <f7—\/2a+ 1 —2@) + Tes (f, \/2a+ 1 —QMD =

_ 1 (2w
2m< \/a(a—l—l))( a(a—i—l))
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and ;
/’2' 1 1 2, _ us
0o a-+sin“d 4i (a+1) 2y/a(a+1)
I/h  p
(e)
Let
s=lzec| - Tcom:< T
B 2 3
and

log* = expl_s1
The function

log™(z)

f(Z) = (1 _|_22)2

has double poles in +i, and

2i+7

res(f,1) = 3

Let A > 1 and
ap: (0,7) = C

t — 1 eim=1)

h

On: (1/h,h) — C
t—t1
Y : (0,7) — C
t s he'
op: (=h,—1/h) = C
t—1
and'=a+ (+v+9. Then

/f 727T+7rz

For the integral on «ay:

/ f(z)dz:—i/ _loghﬂ(”_t)f )i g
an 0 (1+ 262(71' t)i ) ]’L
and
g 1 1 1
/ £(2) d </ ogh+m dt</ ogh+27r dt:(ogh+72r)7r
o FRERRE T AN TR A TR
SO

li dz =
dm [ i

For the integral on Gj:

h
logt
f(z)dz:/ —=_—dt.
Bn 1n (L+12)2
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For the integral on y,:

T logh + it ,
dz= [ 22T petdt
[ s = [ e

and

f(z)dz

Yh

T logh+t " logh log h
S/ Ogif?hdtg/ logh+ 7 gy < doghtm)m,
0 |1+ h2e?i| o |h?—1] |h2 —1]

SO

h—+o00

lim / f(z)dz=0.
Th

For the integral on dy:

“Yhog |t + im b logt h i
dz = g di = 7dt+/ T gt =
, [ [% 1+ 2) ﬂmu+ﬁv n AT B2

/h logt oy T[22 rctant '
= — — | =——5 + arctan =
1n (1412)? 2 |1+ 1/h

h .
logt i 1
= /1/h aroe dt + Y [arctan (h) — arctan <h>} .

Eventually

h , 9.
logt 1 -2
lim 2/ L“ dt + = [arctan (h) — arctan <)} _ err
h—+o00 1/h (1 +t ) 2 h 4

and
h
logt ™
li ———dt = ——.
IL—1>T00 /1/h (]. +t2)2 4

5.3 The Argument Principle

5.3.1 Exercise
5.3.2 Exercise
If |z2| =1
|f(2) = 2"+ 2" = [f(2)| <1 <|f(2) = 2"+ 1= [f(2) — 2" +]2"]

so by Rouche’s Theorem V.3.8 f(z) —2" and 2" have the same number of zeroes, counting multiplicities,
in B(0,1), that is, f(z) = 2™ has n solutions, counting multiplicities, in B(0, 1).
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Part 11

Notes






Chapter 6

The Complex Number System

6.2 The field of complex numbers

2.2 — Since

z = MRe(z) + 1 Im(z) (6.1)
we have

Z = Re(z) — i Tm(2) (6.2)
hence

z+7Z = 2Re(z)

z—Z=2iJm(2)

2.3 — We have

and

2.4 — We have
zwl® = (2w)(z)
= (zw)(zw)
= (2Z)(ww)
= |2[?|w|?
= (|2]Jw])?
hence

|zw| = [2|[w].
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1
hence
1|1
EE
and
z 12| 1 el
w w|  |w|
2.6 — We have
Z°=2@E) =2z =2
hence
1z = |2|

(6.3)

(6.4)

(6.5)



Chapter 7

Metric Spaces and the Topology of
C

7.2 Connectedness

Proof of Proposition 2.8
Proof.

(a) If B is not connected, then it has more than one component. Since A is connected, there must be
a component C'4 such that A C C4. Call C' another component of B and take x € C. There are
two open subsets H; and H, of X such that Cy C Hy, C C Hy and H; N Hy = (. Then there is
an open ball B(z,r) such that B(x,r) C Hy which yields B(x,r) N A = (), so that = ¢ A.

(b) If C is a component of X, C' C C always holds. But for point (a) C also is connected, so C C C.
O
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Chapter 8

Elementary Properties and
Examples of Analytic Functions

8.3 Analitic functions as mappings. Mobius transformations

Proposition 8.3.1. The linear fractional transformation S defined by

az+b
cz+d

S(z) =

is inwvertible if and only if ad — bc # 0 and constant if and only if ad — be = 0.

Proof. If ad — bc # 0 let T be the linear fractional transformation defined by

dw—b
—Ccw +a
dw—b adw—ab—cbw+ab
_ O wta T b _ —cw+ta _ (ad —bojw
T(S(w)) = cdw=b | g cdw—cb—cdwtad g _ pe
—cw+a —cw-+a
and
az+b _ adz+bd—bcz—bd
_ dcz+d b _ cz+d — (ad_ bC)Z
S5(T(z)) = _caztb 4 o zacz=befacztad T g e
cz+d cz+d

If ad — bc = 0 then, if d # 0

S - Yrtb bez+bd  blez+d) b
VT v d T cdz &2 Cdlez+d)  d

if d = 0 then bc = 0 which implies, since it cannot be d = ¢ = 0, that b = 0, and

S(z) = = =

az a
cz ¢

Proposition 8.3.2. The Mébius transformation T defined by

az+b
T(z) = cz+d

satisfies T> = I and T # I if and only if a = —d.

Proof. By computation

(a® +bc)z + ab + bd

T2(z) =
(2) (ca+ cd)z + cb+ d?

so T?(z) = z if and only if
cla+d)z*>+ (a+d)(d—a)z — (a+d)b=0.
This holds for every z € C if and only if a = —d.

(8.1)
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Proposition 8.3.3. If T is a Mébius transformation and T? = I then T has two distinct fized points.

Proof. By Proposition if T? = I then

T(z) = 2210 (8.10)

cz—a

Then T'(z) = z if and only if.

ez —2az—b=0 (8.11)
This equation has two different roots if and only if

a®+bc#0 (8.12)
which holds if T" is a Mobius transformation. O

Proposition 8.3.4. If z1, 2o are two distinct points in C, there is only one Mdobius transformation T
such that T? = I and 21,29 are the fized points of T, and it is represented by

(21 + 22)z — 22129

T(z) = 8.13
() =S (8.13)
Proof. Let
az+b
T(z) = . 8.14
() = 220 (5.14)
Then T'(z) = z if and only if
cz® —2az—b=0. (8.15)
If 6; and 6, are the two square roots of a® + be, the last equation has the two roots
0
2= “t ! (8.16)
0
= “t 2 (8.17)

We can suppose a? + bc = 1, otherwise we can divide every coefficient in the representation of 7' by
any 7 such that 72 = a® + bc, and get another representation of 7. Then

1
o= 2T (8.18)
c
a—1
= . 8.19
22 p (8.19)
Hence
g At (8.20)
Z1 — 22
2
= . 8.21
= (8.21)
From a2 + be = 1 follows
2
h= 122 (8.22)
Z9 — 21

It is a simple check to verify that if T" is represented by (8.13]) then z; and z5 are its fixed points. [

Proposition 8.3.5. Let T, S be Mébius transformations such that T? = S? = I, with fized points
respectively z1, zo and wy,wy. If T(wy) = wy then S(z1) = 2.
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Proof. We know that the Mobius transformation S that has fixed points w; and ws is represented by

(w1 + ws)z — 2wiwsy

S = 8.23
(2) %% (wr F ) (8.23)
If T has fixed points z; and 2, and we = T'(w;), then
-2
wy — (21 + 22)wn 2129 (8.24)
2w1 — (Zl —+ ZQ)
Therefore

(z1+22)w1—22122 _ (z1+22)w1—22122
(wl + 2w —(z1+22) z 2’&11 2wi —(z1+22)

S<Z> - 2z — (w1 -+ (21+22)w1—2z1z2) - (825)

27,017(2’1#’22)

(2w? — 22129)2 — 2w3 (21 + 22) + 4w 2122

_ 8.26
(dwy — 2(21 + 22))z — (2w? — 22129) (8.26)
(8.27)

and
S(z1) = wiz — 2izp — wiz — wizm + 2wiz1z _ (8.28)

2wz — 238 — 2129 — WP + 2129
2 2
_ —2i22 —wjze + 2w12122 (8.29)
= 2 2 = :
2wiz1 — 2{ — Wi

Z1 — W1 22’2
_ ((Zl_wz)z — (8.30)

O

Proposition 8.3.6. If T, S are Mébius transformations such that T? = S? =T and T swaps S’s fized
points, then ST =TS.

Proof. Let 21,29 and wy,wy be the fixed points of T and S. Then T'(w;) = we and by Proposition
S(z1) = z2. Let R be the Mobius transformation defined by

R(x0) = 29 (8.31)

Then
R™'SR(0)
R™'SR(c0)
R'SR(1)

(o]
0 (8.32)
1

which implies that R~'SR(z) = L. Furthermore

R™'TR(0)
R™'TR(c0)
R™TR(1)

0
00 (8.33)
.

H(wg)

but R7ISR(R™(wsq)) = R71S(wq) = R~ (wq) whence R~ (wy) = 1 or R~ (wq) = —1, but R~ (wq) =
1,50 R~ (w;) = —1. Then R"'TR(z) = —z, and R"!TR and R~!SR commute. But then R"!TRR™!SR =
RYSRR™'TR implies TS = ST. O

Proposition 8.3.7. If T is a Mébius transformation such that T? = I with fized points z; and z,
then for any z € C the points z,T(z), 21, z2 lie on a circle.
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Proof. We have

(T'(2), 21, 22, 2) = (2,21, 22, T(2)), (8.34)
that is
z—z9 21 —T(2) _ T(z)— 22 21— 2 (8.35)
z—=T(2) 21— 2 T(z) — 2 21— 22
whence
Z—Z2
e (8.36)
T(z)—z1
that is
(2, T(2),22,21) = —1. (8.37)



Chapter 9

Complex Integration

9.1 Riemann-Stieltjes integrals
Proposition 9.1.1. Let vy : [a,b] — C be a rectifiable path, a < h < b. Define

Y1 = V[a,h]
Y2 = Y|[h,b]-
Then V(v) =V (m) + V(12)-
Proof. Let
Pl = {to,t1,....,tn}
P2 = {50,51,.++,5m}
be partitions of [a, k] and [h,b]. Then P = P! UP? is a partition of [a,b] and
V(n, P +V(72,P?) = V(7,P) V(7).
whence
Vin) + Vi) <V(H).
If
P = {to,t1,.-,tn}
is a partition of [a,b], let k be such that h € [t,t54+1]. Then
P ={to,t1, sty hytpst, - stn}
is a refinement of P and

Pl = {t07t17"'7tk7h}
P2 ={h,tis1, - tn, }

are partitions of [a, h] and [k, b]. Then
V(. P)=V(y1,P) +V(72,P*) <V(n) + V(r2)
whence
V() V) +Vire)-
O

Proposition 9.1.2. Let v : [a,b] — C be a contionuous path, and suppose that for every h such that
a < h <b the path vy, = |[np) is rectifiable, and

I= hlllgr V() € R. (9.1

Then v is rectifiable, and V(y) = I.
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Proof. Let € > 0, and let P be any partition of [a,b]. Take ¢ such that for z1,x2 € [a,b], |T1 — 22| <6
yields |y(z1) — v(x2)| < € (of course v is uniformly continuous). Now, take a refinement of P

P = {to,t1,...,tn} (9.2)

such that [P’| < 0. Then

n

v(3,P) < v(1,P) = () = 1(t)| + 3 t) = A(te-1)] <

k=2
n
<et Y Iyte) = (tk-r)| <
k=2
<e+V (7|[t17b]) <e+ 1.

Hence for every € > 0 V() < e + I, which yields V(vy) < I.
On the other hand, if a < h < b and P is any partition of [k, b], we have

v(vh, P) < V(7) (9.3)
which yields

Vi) <V(v) (9-4)
and eventually

I<V(y). (9.5)

Corollary 9.1.1. Let 7 : [a,b] — C be a rectifiable path and a <t <b. Define v¢ = 7|(a,q- Then
Jm Vi) = V(7).
Proof. The function

f:la,b) — R
t—Vin)

is increasing, and f(t) < V(7), so its limit in b~ exists in R. By Proposition this limit is V' (%).
O

Corollary 9.1.2. Let v : [a,b] — C be a rectifiable path and a <t <b. Define oy = ). Then

lim V(oy) = 0.

t—b—

Proof. Let vt = V|[q,4)- Then V(v;) 4+ V(0¢) = V(7) so by Corollary

lim V(o) =V (y) — lim V(o) = 0.

t—b— t—b—
O
Proposition 9.1.3. Let t;, be a sequence of real numbers such that ty, € [a,b], to = a, tgy1 >t and

limt, = b, and for each k let g : [tr, tk+1] — C be a smooth path, with vi(tk+1) = Ye+1(tkt1), and
suppose that the series

+oo
> Vi)
k=0

converges. Then i (tr) converges, the path v : [a,b] — C defined by

() = i (t) if t € [tk,tiy1) kEN
7 lim g (tx) ift=>
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is rectifiable, and

+oo
7 => V(w)
k=0

Furthermore if [ is a continuous function defined on an open subset of C contaning {~}

+oo
/f(z)dzzz f(z)dz

k=0" Tk

Proof. If € > 0 there is n € N such that no > n; > 7 implies

S Vi) <e

k:n1
Soifng>ni >n

no—1

Z Yet1(thg1) — W(te)| =

k:’ﬂl

|’7n2 (tn2) — Tny (tn1)| =

no—1

D wwltrar) = w(te)| <

k:nl

’ﬂz—l

< kltern) — wlte)] <
k}:’ﬂl

’I’L2—1

<Y Vim)<e

k:nl
which means that 7 (¢x) is a Cauchy sequence, and thus it converges. Let
[l = lim’yk(tk).
Now if € > 0, let k such that k > k implies |l — y(tx)| < § and V() < §. If 6 =b—t5 then b—t <0

implies ¢ € [tg,, try+1] for some kg > k, thus if b — ¢ < § then

() = V(O] = I = (tro) + Voo () = V(O] < 5 + V() < €

This proves that « is continuous in b.
Now, if ¢ € [a,b) the path 7; = 4|[4,4 is piecewise smooth, so if 7 is such that ¢ < t; then

ZV% <> V|
k=0 k=0

SO

oo

<>V

k=0
If € > 0 there is n such that

o0

ZV(%) > ZV(%) —€

k=0 k=0

thus
V() =V Watnr) = D V0w > D> Viw) —
k=0 k=0

Since this holds for any € > 0, it yields
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If f is a continuous function defined on an open subset of C contaning {7}, let 4% = v[a,¢,]- Then

—1 +oo
Z f(z)dz = Z f(2)dz.
h

k
h=0"Y"7h =0Y7h

Lf(z)dz_ lim A f(z)dz = lim

k—-+4oco k—-+oco



Appendix A

Miscellaneous

A.1 Identity 1

The following identity holds (in any ring):

n n—=k
E E apbp—n = E E axbp.
k=0 h— k=0 h—=0

Proof. By induction on n. If n = 0 then the left side is
Zzahbk h= Zahbo h = aobo
k=0 h=0

and the right one

0 0—k

Z Z akbh = Z aobh = aobo

k=0 h=

Now, supposing the identity holds for n:

n+1l k n+1
E E apbr—n = g E anbi—p + E anbpt1—n =
k=0 h—=0 k=0 h=0 h—0
n n—k n+1
= g E arbp + g anbpt1—n =
k=0 h—0
n n—=k
= E E arbp + E anbnti—n + Ani1bo =
k=0 h—0 h=0
n n—=k
= E E aibp + E arbni1—k + any1by =
k=0 h=0
n n+l—=k
= E E aibp + E Apy1bp =
k=0 h=0 h=0
n nt+l—k n+1l—(n+1)
= E E arbp + E Gny1bp
k=0 h=0 h=0
n+ln+t+l—k

:Z Z arby,.

k=0 h=0
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A.2 The real and immaginary part and module of sin and cos

ei(a:+iy) _ e—i(m+iy) eit—yY _ p—izty

sin(x + iy) = 5 = % =
e Y(cosx +isinx) —e¥(cosx —isinz)
= o =
~ —cosz(e¥ —e7Y) +isinz(e! +e7V)
= 5 =

= sin x cosh y + i cos x sinh y.

|sin(z + iy)|* = (sinz)?(coshy)? + (cos z)?(sinh y)? =
= (sinz)? + (sinz)?(sinh y)? 4 (cos z)?(sinh y)? =
= (sinz)? + (sinh y)?.

ei(x+iy) + efi(w+iy) etT—Y + ety

cos(z +iy) = 5 = 5 =
e Y(cosx +isinx) +eY(cosx —isinz)
= 5 =
_cosz(e’ +e V) —isinx(e! —e7Y)
= 5 =

= cosx coshy — ¢sinx sinhy.

|cos(a + iy)|* = (cos x)?(coshy)? + (sinz)?(sinh y)? =
= (cosz)? + (cosz)?(sinh y)? + (sinz)?(sinhy)? =
= (cosz)? + (sinh y)?.

A.3 The group SL(C)

Proposition A.3.1. The group SLy(C) has no normal non trivial subgroup other than

{96 )

Proof. Clearly K is a normal subgroup of SLo(C). Let A/ be a normal subgroup of SLo(C) and N # K,
N #£ {I}. We will prove that N' = SLs(C) by showing that for any conjugated class C of SLs(C) there
is L € N'NC. Since all the elements of SLy(C) belonging to the same conjugated class must also be in
N, this proves that N = SLs(C).

In SL2(C) there is, for any Ai, A2 such that A\; # Ao, one conjugated class containing

A O
D)\l,)\Q = (Ol )\2> )

one conjugated class containing only

10
=00

one conjugated class containing only

-1 0
_1_(0 —1)’

one conjugated class containing

11
7 (o)
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one conjugated class containing

k=4 L)

Let A € N such that A # I. Let §;,02 € C and h = 6; + §>. Now we show that there is Y € A such
that the eigenvalues of Y are 41, ds.

If the with eigenvalues of A are A; and Ay such that A\; # \a, then all the elements of SLo(C) with
the same eigenvalues must be in N, in particular

B (Aol AOQ) EN. (A.5)

Let

X = (j lt/) . (A.6)

The linear system
Mz + At =h
{ e (A.7)

I+t:)\1+)\2

has one solution, for any h, A1, Ag, since A1 # Ao, and that means Tr(XB) = h, Tr(X) = A + Ao.
Choosing z,y such that 2t — zy = 1 we have X € N, so XB € N and Tr(X B) = h, which implies that
the eigenvalues of X B are §1,02. If h # 2 and h # —2 then 6; # do. If h = 2 then §; = d> = 1 and
XB # I, since B~! has the same eigenvalues as B, so X B is similar to H. If h = —2 then §; = §, = —1
and XB # —I, since —B~! has the same eigenvalues as —B, so X B is similar to K. Finally, if C is
similar to H and D is similar to K then C'D is similar to HK = —1.

If the eigenvalues of A are not distinct, A must not be similar either to I or —1I, so it is similar to
H or to K.

Suppose A similar to H. Let

X - ( g). (A8)

The linear system

x+t=2 (A-9)

{x+z+t:h

has oo! solutions, for any h, for all of which z = h — 2. If h # 2 we can choose y such that 2t — zy = 1,

and X H is similar either to Ds, 5, if h # —2, or to K if h = —2. If h = 2 there’s no need to show
anything since any Z € SLy(C) such that Tr(Z) = 2 is already similar to A.

The same holds if A is similar to K. O
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